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Abstract
In supervised learning, smoothing label or predic-
tion distribution in neural network training has
been proven useful in preventing the model from
being over-confident, and is crucial for learning
more robust visual representations. This observa-
tion motivates us to explore ways to make predic-
tions flattened in unsupervised learning. Consid-
ering that human-annotated labels are not adopted
in unsupervised learning, we introduce a straight-
forward approach to perturb input image space
in order to soften the output prediction space in-
directly, meanwhile, assigning new label values
in the unsupervised frameworks accordingly. De-
spite its conceptual simplicity, we show empiri-
cally that with the simple solution – Unsupervised
image mixtures (Un-Mix), we can learn more ro-
bust visual representations from the transformed
input. Extensive experiments are conducted on
CIFAR-10, CIFAR-100, STL-10, Tiny ImageNet
and standard ImageNet with popular unsupervised
methods SimCLR, BYOL, MoCo V1&V2, etc.
Our proposed image mixture and label assign-
ment strategy can obtain consistent improvement
by 1∼3% following exactly the same hyperparam-
eters and training procedures of the base methods.

1. Introduction
In recent years, unsupervised visual representation learning
has attracted increasing attention (Noroozi & Favaro, 2016;
Zhang et al., 2016; Oord et al., 2018; Hjelm et al., 2018;
Gidaris et al., 2018; Wu et al., 2018; He et al., 2019; Misra &
van der Maaten, 2019; Tian et al., 2019; Chen et al., 2020a;
Kim et al., 2020; Grill et al., 2020; Caron et al., 2020; Kalan-
tidis et al., 2020) due to its enormous potential of being free
from human-annotated supervision, i.e., its extraordinary
capability of leveraging the boundless unlabeled data. Pre-
vious studies in this field address this problem mainly in
two directions: one is realized via a heuristic pretext task
design that applies a transformation to the input image, such
as colorization (Zhang et al., 2016), rotation (Gidaris et al.,
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Figure 1. Illustration of our work’s motivation. We take the
contrastive-based unsupervised learning approaches as an example.
Contrastive learning measures the similarity of sample pairs in the
latent representation space. With flattened prediction/label, the
model is encouraged to treat each incorrect instance as equally
probable, which will smooth decision boundaries and prevent the
learner from becoming over-confident.

2018), jigsaw (Noroozi & Favaro, 2016), etc., and the cor-
responding labels are derived from the properties of the
transformation on the unlabeled data. Another direction is
contrastive learning based approaches (He et al., 2019; Chen
et al., 2020a) in the latent feature space, such as maximizing
mutual information between different views (Bachman et al.,
2019; Tian et al., 2019), momentum contrast learning (He
et al., 2019; Chen et al., 2020b) with instance discrimination
task (Wu et al., 2018; Ye et al., 2019), larger batch sizes
and nonlinear transformation (Chen et al., 2020a), sym-
metrized distance loss without negative pairs (Grill et al.,
2020), contrasting cluster assignment (Caron et al., 2020).
These methods have recently shown great promise for this
task, achieving state-of-the-art accuracy.

The motivation of our work stems from some simple obser-
vations of label smoothing in supervised learning (Szegedy
et al., 2016). Interestingly, we observed from visualiza-
tions of previous literature (Müller et al., 2019) that label
smoothing tends to force the output prediction of networks
being less confident (i.e., lower maximum probability of
predictions) but the overall accuracy can increase signifi-
cantly. The explanation for this seemingly contradictory
phenomenon is that with label smoothing, the learner is
encouraged to treat each incorrect instance/class as equally
probable. Thus more structure is enforced in latent represen-
tations, enabling less variation across predicted instances
and/or across samples. This will further prevent the network
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from overfitting to the training data. Otherwise, the network
can often output incorrect and confident predictions when
evaluated on slightly different test samples. Considering
that contrastive learning essentially is classifying positive
congruent and negative incongruent pairs with cross-entropy
loss, such an observation reveals that a typical contrastive-
based method can also encounter the over-confidence prob-
lem as in supervised learning.
The perspective of input and label spaces on un-/self-
supervised learning. Contrastive learning methods adopt
instance classification pretext, the features from different
transformations (data augmentation) of the same images
are compared directly to each other. The label of each pair
images is binary (positive or negative) or continuous dis-
tance metrics. Augmentation is used as a transformation
to make distance of the same image to be larger. Different
from data augmentation that enlarges the dissimilar dis-
tance but the label for calculating loss is still unchanged,
our proposed mixtures will manipulate the semantic dis-
tance between two images, while adjusting the label for
unsupervised loss accordingly. In other words, data aug-
mentation only changes the distance of input space, i.e.,
heavier data augmentation makes two images look more
different, but remains unchanged in label space during
training. However, mixture will manipulate both input and
label spaces simultaneously and the degree of change is
controllable, which can further help capture the fine-grained
representations from the unlabeled images and obtain mod-
els with more precise and smoother decision boundaries at
latent features. As a result, neural networks trained with
new spaces learn flatter class-agnostic representations, that
is, with fewer directions of variance. The mechanism of
image mixtures in unsupervised learning is generally dif-
ferent from the data augmentation. From this perspective,
mixtures can be considered as a broader concept of data
augmentation scheme in unsupervised learning.

We choose four recently proposed unsupervised methods:
SimCLR (Chen et al., 2020a), MoCo V1&V2 (He et al.,
2019; Chen et al., 2020b), BYOL (Grill et al., 2020) and
Whitening (Ermolov et al., 2020) as our baseline approaches.
We conduct extensive experiments on CIFAR-10, CIFAR-
100, STL-10, Tiny/standard ImageNet classification, as well
as downstream object detection task on PASCAL VOC and
COCO to demonstrate the effectiveness of our proposed ap-
proach. We observe that our mixture learned representations
are extraordinarily effective for the downstream detection
task. For example, our 200-epoch trained model outper-
forms the baseline MoCo V2 by 0.6% (AP50), and is even
better than the MoCo V2 800-epoch model.

Our contributions are summarized as follows:
• We provide empirical analysis to reveal the fact that

mixing input images and smoothing labels could im-
prove performance favorably for a variety of unsuper-

vised learning methods. We applied two simple image
mixture methods based on previous literature (Zhang
et al., 2018; Yun et al., 2019) to encourage neural net-
works to predict less confidently.
• We show that input and label spaces matter. We provide

evidence on why this flattening happens under ideal
conditions of latent space, validate it empirically on
practical situations of contrastive learning, and connect
it to previous works on analyzing the discipline inside
the unsupervised learning behavior. We explain the
difficulties that arise with original image space when
visualizing these trajectories of predictions. Thus we
conclude that good input and label spaces are crucial
for unsupervised optimization.

• Our proposed method is simple, flexible and univer-
sal. It can be utilized to nearly all mainstream un-
supervised learning methods and only requires ∼10
lines of PyTorch codes to incorporate in an exist-
ing framework. We demonstrate our strategy with
a variety of base approaches and datasets, including
SimCLR, BYOL, MoCo V1&V2, etc., on CIFAR-10,
CIFAR-100, STL-10, Tiny ImageNet and standard Im-
ageNet. Our method obtains consistent accuracy im-
provement by 1∼3% across them. Code is available at:
https://github.com/szq0214/Un-Mix.

2. Related Work
Un/Self-supervised Visual Feature Learning. Unsuper-
vised learning aims to exploit the internal distributions of
data and learns a representation without human-annotated
labels. To achieve this purpose, early works mainly focused
on reconstructing images from a latent representation, such
as autoencoders (Vincent et al., 2008; 2010; Masci et al.,
2011), sparse coding (Olshausen & Field, 1996), adversarial
learning (Goodfellow et al., 2014; Donahue et al., 2016;
Donahue & Simonyan, 2019). After that, more and more
studies tried to design handcrafted pretext tasks such as im-
age colorization (Zhang et al., 2016; 2017), solving jigsaw
puzzles (Noroozi & Favaro, 2016), counting visual prim-
itives (Noroozi et al., 2017), rotation prediction (Gidaris
et al., 2018). Recently, contrastive based visual represen-
tation learning (Hadsell et al., 2006) has attracted much
attention and achieved promising results. For example,
Oord et al. (Oord et al., 2018) proposed to use autoregres-
sive models to predict the future samples in latent space
with probabilistic contrastive loss. Wu et al. (Wu et al.,
2018) proposed a non-parametric memory bank to store
the instance representation for tackling the computational
issue. Hjelm et al. (Hjelm et al., 2018) proposed to maxi-
mize mutual information from the encoder between inputs
and outputs of a deep network. Bachman et al. (Bachman
et al., 2019) further extended this idea to multiple views
of a shared context. Moreover, He et al. (He et al., 2019)

https://github.com/szq0214/Un-Mix
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proposed to adopt momentum contrast to update the models
and Misra&Maaten (Misra & van der Maaten, 2019) devel-
oped the pretext-invariant representation learning strategy
that learns invariant representations from the pre-designed
pretext tasks.
Smoothing Label/Prediction in Supervised Learning.
Explicit label smoothing has been adopted successfully to
improve the performance of deep neural models across a
wide range of tasks, including image classification (Szegedy
et al., 2016), object detection (Krothapalli & Abbott, 2020),
machine translation (Vaswani et al., 2017), and speech recog-
nition (Chorowski & Jaitly, 2016). Moreover, motivated by
mixup, Verma et al. proposed to implicitly interpolate hid-
den states as a regularizer that encourages neural networks to
predict less confidently (softer prediction) on interpolations
of hidden representations. They found that neural networks
trained with this kind of operation can learn flatter class rep-
resentations which possess better generalization, as well as
better robustness to novel deformations and even adversarial
examples in testing data. Some recent work (Müller et al.,
2019) further demonstrated that label smoothing implicitly
calibrates the prediction of learned networks, so that the
confidence of their outputs are more aligned with the true
labels of the trained dataset. However, all of these studies
lie in supervised learning. To the best of our knowledge,
there is no existing work focusing on smoothing predictions
for unsupervised learning and this is the first exploration in
this direction.

3. Image Mixture Strategies
We start by introducing two atomic mixture operations be-
fore explaining ways to use them in the various unsuper-
vised frameworks in Sec. 3.2. Many successful image mix-
ture methods in supervised learning scheme have been pro-
posed (Zhang et al., 2018; Yun et al., 2019) where they build
upon the global/region-level images of explicit supervision.

3.1. Basic Mixture Operations

Mixup (Zhang et al., 2018) is a popular mixture method
for pixel-wisely obtaining the weighted combination of two
global images. All information of two input images will
be reserved in the mixed sample, but the mixture will be
visually misty, as shown in Fig. 2 (top).

Ig m ← αI1 + βI2 (1)

where {I1, I2} denote the images that we want to mix and
Ig m is the output mixture. α, β ∈ [0, 1] are mixture coeffi-
cients and are restricted to α+ β = 1.

Cutmix (Yun et al., 2019) is the way to generate a new
training sample by locally combining two samples of their
region and whole image. Different from Mixup, this op-
eration will replace pixels within particular locations of a
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Figure 2. Top: global image mixture following Mixup (Zhang et al.,
2018). Bottom: region-level mixture by adopting Cutmix (Yun
et al., 2019). Since the input space has been changed by the
mixture operations, the corresponding predictions will also be less
confident in unsupervised frameworks, as illustrated on the right.
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Figure 3. Illustration of self-mixture within a mini-batch. In each
iteration, we randomly choose one mixture operation for all the cur-
rent samples with a pre-defined probability P , thus the formulation
of λ depends on the mixture type we choose.

region, as shown in Fig. 2 (bottom).

Ir m ←Mb � I1 + (1−Mb)� I2 (2)

where Mb ∈ {0, 1}I denotes a binary mask as defined
in (Yun et al., 2019). 1 is a binary mask with all values
equaling one. � denotes element-wise multiplication.

Both Mixup and Cutmix can be regarded as the regulariza-
tion techniques to prevent the models from being overfitting
and make the predictions less confident.

3.2. Self-Mixtures within Per Mini-Batch of Training

In our method, the mixing ratio of two images is the core
information that we would like to utilize in the unsupervised
methods. Here we introduce a simple strategy to retain such
information for loss calculation. We propose to mix the first
image with the last one in each mini-batch of training, the
second one is mixed with the penultimate, and so on. Our
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strategy is visualized in Fig. 3, the advantages of such strat-
egy are: (i) Different from employing individual ratio for
each image in one mini-batch, the proposed scheme can be
realized through calculating the batch loss with a weighted
coefficient, which is well-regulated, controllable, more effi-
cient during training and can facilitate the design of label
assignment in unsupervised frameworks. (ii) As we will in-
troduce below, the proposed method will make the distances
between the mixtures and the origins to be consistent in each
mini-batch. Hence, the calculation rule of loss function will
be independent from the different frameworks that are used.
For example, contrastive learning (consisting of positive and
negative pairs) or positive only, using memory bank or with-
out it, etc., since scaling similarity distance is equivalent to
weighting the loss value. We demonstrate that our method
only requires ∼10 lines of PyTorch codes to incorporate
into all of these frameworks, and further delivers significant
improvement over these base approaches.

4. Label Assignment/Smoothing in the
Unsupervised Frameworks

In this section, we first present different paradigms using
mixtures in the unsupervised learning framework, including
mixing both two branches and a single one. Then we discuss
the circumstances that contain a memory bank or not, and
the loss functions for different scenarios. Lastly, we provide
a simple demonstration of how to apply multi-scale training
for further boosting the performance.

4.1. Paradigms of Mixtures

Given an image I , we first augment it to two transformed
views IA and ÎA by applying a pre-defined random trans-
formation. The proposed mixtures are following the image
transformations of the input sample. We define IMA and ÎMA
as the mixed images which can be {Ig m, Ir m} according
to the type of mixture operation we choose in the current
training iteration. The mixed images are forwarded to the
target network fθ, then a non-linear projection head pθ is
adopted to obtain the representations of the input sample for
the unsupervised distance loss. In the following, we discuss
two circumstances in such a framework, as shown in Fig. 4.
Both IA and ÎA are mixed (Fig. 4 (2)). This solution is
to mix both the two views of an input image. Thus, the
similarity between mixtures will remain unchanged. While
such dynamic mixtures in both branches still admit unde-
sirable equilibria, we found this strategy is effective on the
relatively small datasets like CIFAR, STL-10, etc., but does
not help significantly on the large-scale ImageNet.
Only IA is mixed (Fig. 4 (3)). This is the main strategy
that we use in this work. Compared to the one above, this
solution is more efficient since it only needs one additional
branch of forward-propagation (two times for the normal
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Figure 4. Comparison of different paradigms of utilizing mixtures
in unsupervised learning. (1) is the conventional instance classifi-
cation based framework. (2) and (3) are the strategies of applying
image mixtures. “self-mixtures” denotes that the images of mix-
ture operation only happens in current batch samples. The dashed
bounding box represents the mixed image and its representation.

and reverse orders of mixed batch samples). From our
experimental results it is also more effective for obtaining
performance gain over the baseline approaches.

4.2. Dealing with Memory Banks

Our goal is to enhance visual features by leveraging addi-
tional mixture information and the different mixing ratios
between two images in the unsupervised scheme. To this
end, we propose a way to re-measure the distances of posi-
tive and negative pairs for unsupervised methods.
Without a memory bank. Under this circumstance, the
unsupervised frameworks will be a positive pair only (i.e.,
BYOL (Grill et al., 2020)) or contrastive-based (i.e., Sim-
CLR (Chen et al., 2020a)) pipelines. Within them, we still
keep the distance of negative pairs as zero if there are, even
they are one original and one mixed image. Therefore, we
only need to design the new distance of the positive pairs,
as shown in Fig. 6. In our self-mixture strategy, the new
distance of a positive pair will be:

IMA = λI1 + (1− λ)I2,

dis
(
IMA , ÎA

)
=

{
λ if ÎA = Î1,

1− λ if ÎA = Î2.

(3)

where Î1, Î2 are another views of I1, I2 from the same
images. In the conventional unsupervised scheme, they are
a positive pair. λ is the mix ratio controlled by the type of
mixture we use in the current iteration of training, if it is
global, λ = α as in Eq. 1, otherwise, λ = Mb

1 as in Eq. 2.
With a memory bank. Using a memory bank solely affect
the constitution of negative pairs as the distance/label be-
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Figure 6. Distance matrix of proposed mixture strategy between
the mixed IA (i.e., IMA ) and ÎA for calculating the distance loss.
Here we take six images in the mini-batch as an example.

tween them is always zero in instance classification based
contrastive learning. In particular, negative pairs can be
{origin, origin}, {origin, mixture}, {mixture, mixture}. We
found in experiments that maintaining one bank with the
representations from original/unmixed images is enough to
obtain good performance. However, this is inapplicable in
the multi-scale training scheme, as we will introduce later.

4.3. Loss Functions

We now introduce the loss functions. We compute an extra
loss from a mixed pair of the image. Given two mixed
images IMA and ÎMA from two different augmentations of
the same image (the case that both are mixed), we compute
their loss together with the original one as the following:

Lboth = Lori(IA, ÎA) + Lm(IMA , ÎMA )︸ ︷︷ ︸
extra term of mixtures

(4)

where Lori is the original loss function and Lm measures
the fit between samples IMA and ÎMA .

Finally we define the following sum of three loss terms from

the original and mixed predictions as the ultimate objective:

Lours=Lori + λLm(IMA (↓), ÎA)︸ ︷︷ ︸
normal order of mixtures

+(1−λ)Lm(IMA (↑), ÎA)︸ ︷︷ ︸
reverse order of mixtures

(5)
where the last two loss terms measure the fit between sam-
ples IMA and ÎA, as detailed above.

Enabling Multi-scale Training. Inspired by the prior
study (Caron et al., 2020) that comparing random crops
of an image is crucial for the networks to capture infor-
mation of patterns from scenes or objects, we explore the
possibility of employing multi-scale training in our mixture
framework. Different from (Caron et al., 2020), we discuss
the circumstance of multi-scale training where the frame-
work contains a memory bank. In such a framework, the
input sizes of multi-scale training are different for a network,
but after flowing forward through an MLP projection head,
the latent features will be of the same dimension. As mem-
ory bank is used to increase the number of negative pairs, so
that we can share a single memory bank for all the scales of
inputs to generate negative pairs. Unfortunately, we found
that this sharing strategy leads to poor performance of repre-
sentation ability which is incongruous with that we share the
memory bank for original and mixed images above in the
single-scale scenario. We conjecture that, in the multi-scale
situation, such negative pairs are far away from the decision
boundary so they are actually the “easy” negative samples.
Adopting individual memory banks for each input size of
samples is proven a better choice in our experiments. As
shown in Fig. 10, the final loss is aggregated from all the
scales of training samples.

5. Experiments
We demonstrate the effectiveness of our learned representa-
tion after unsupervised pretraining on a variety of datasets.
We first evaluate it with a large number of baselines in linear
evaluation. We then measure its transfer capability using
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Figure 7. Illustration of the proposed multi-scale training strategy.
We aggregate losses from all of the different scales of inputs.

object detection task on PASCAL VOC and COCO.

5.1. Datasets

CIFAR-10/100 (Krizhevsky et al., 2009). The two CIFAR
datasets consist of tiny colored natural images with a size
of 32×32. CIFAR-10 and 100 are drawn from 10 and 100
classes, respectively. In each dataset, the train and test sets
contain 50,000 and 10,000 images.
STL-10 (Coates et al., 2011). STL-10 is inspired by
CIFAR-10 with 10 classes, but each class has fewer labeled
training examples (500 training images and 800 test images
per class). The size of images is 96×96. It also contains
100,000 unlabeled images for unsupervised learning.
Tiny ImageNet. Tiny ImageNet is a lite and small version
of ImageNet which contains 200 classes with images resized
down to 64×64. The train and test sets contain 100,000 and
10,000 images, respectively.
ImageNet (Deng et al., 2009). The ImageNet, aka ILSVRC
2012 classification dataset (Deng et al., 2009) consists of
1000 classes, with a number of 1.28 million training images
and 50,000 validation images.

5.2. Baseline Approaches
We perform our evaluation of image mixtures and label
assignment strategy on the following four recently proposed
unsupervised methods with state-of-the-art performance:
MoCo V1&V2 (He et al., 2019; Chen et al., 2020b)
MoCo is a contrastive learning method using momentum
updating for unsupervised visual representation learning.
MoCo V2 further improves momentum contrastive learning
by adopting an MLP projection head and more data aug-
mentation from the following SimCLR (Chen et al., 2020a).
SimCLR (Chen et al., 2020a). SimCLR is a simple frame-
work for contrastive learning without requiring specialized
architectures or a memory bank. It introduces a learnable
nonlinear transformation which substantially improves the
quality of the learned representations.
BYOL (Grill et al., 2020). BYOL adopts online and target
networks that learn from each other. It trains the online
network to predict the target network representation of the

same image under a different augmented view. At the same
time, they update the target network with a slow-moving
average of the online network without the negative pairs.
Whitening (Ermolov et al., 2020). Whitening is a new pro-
posed loss function for unsupervised representation learning
which is based on the whitening of the latent space features.
The whitening operation has a scattering effect to avoid
degenerate solutions of collapsing to a simple status.
Our baseline approach implementations follow the official
codebases which are all publicly available123.

5.3. Implementation Details in Pre-training

The goal of our experiments is to demonstrate the effective-
ness of our proposed image mixture and label assignment
upon various unsupervised learning frameworks, isolating
the effects of other settings, such as the architectural choices,
data augmentations, hyper-parameters. As this, we use the
same encoder ResNet-18 for all non-ImageNet experiments
and ResNet-50 for ImageNet. We use exactly the same
training settings, hyper-parameters, etc., as our comparisons.
Therefore, all gains in this paper are “minima”, and further
tuning the hyper-parameters in the baseline approaches to fit
our mixture strategies might achieve bigger improvement,
while it is not the focus of this work.
Non-ImageNet Datasets. Following (Ermolov et al., 2020),
on CIFAR-10 and CIFAR-100, we train for 1,000 epochs
with learning rate 3×10−3; on Tiny ImageNet, 1,000 epochs
with learning rate 2×10−3; on STL-10, 2,000 epochs with
learning rate 2×10−3. We also apply warm-up for the first
500 iterations, and a 0.2 learning rate drop at 50 and 25
epochs before the end.
Standard ImageNet. Unless otherwise stated, all the hyper-
parameter configurations strictly follow the baseline MoCo
V2 on ImageNet. For example, We use a mini-batch size of
256 with 8 GPUs on ImageNet, considering our primary ob-
jective is to verify the effectiveness of our proposed method
rather than to suppress state-of-the-art results.

For image mixtures and label assignment, we use γ = 1.0
in beta sampling for all experiments, and P = 0.5 for non-
ImageNet and 0 for ImageNet based on our ablation study.

5.4. Linear Classification

Our linear classification experiments consist of two parts:
(i) ablation studies on small datasets including CIFAR-10,
CIFAR-100, STL-10 and Tiny ImageNet with various base
approaches to explore the optimal mixture hyperparameters
and demonstrate the effectiveness of our strategy; (ii) the

1https://github.com/facebookresearch/moco.
2https://colab.research.google.com/github

/facebookresearch/moco/blob/colab-notebook
/colab/moco cifar10 demo.ipynb.

3https://github.com/htdt/self-supervised.

https://github.com/facebookresearch/moco
https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb
https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb
https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb
https://github.com/htdt/self-supervised
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Figure 8. The curves of training loss and testing accuracy of SimCLR, BYOL and MoCo on CIFAR-10/100 datasets.

0.00 0.25 0.50 0.75 1.00
probability of global mixture

93.50

93.75

94.00

94.25

94.50

Ac
c.

 (%
)

BYOL Acc. on CIFAR-10
ratio of mixture types

Figure 9. Acc. with various P .

Table 1. Sensitivity for γ.
CIFAR-10 γ in Beta sampling

1.0 0.8 0.5
Acc. (%) 94.20 94.12 93.93

Table 2. Sensitivity for P .
ImageNet P of global mixture

1.0 0.5 0.0
Acc. (%) 67.6 68.3 68.6

final results on the standard ImageNet using MoCo V2.
Ablation Study. We investigate the following aspects in our
methods: (i) the probability P between global and region
mixtures; (ii) sensibility of γ in beta distribution sampling.
(1) Probability P for choosing global or region-level
mixtures in each iteration. The result are shown in Fig. 9
(non-ImageNet) and Tab. 2 (ImageNet). It shows that
P = 0.5 is optimal for small datasets and choosing region-
level only (i.e., P = 0) is best for large-scale ImageNet.
(2) Beta distribution hyperparameter γ. The combina-
tion ratio λ between two sample points is sampled from the
beta distribution Beta(γ, γ). Our results on different γs are
presented in Tab. 1, γ = 1.0 is the best and we use it for
all our experiments, which means that λ is sampled from a
uniform distribution [0, 1].
Results on CIFAR-10/100, STL-10 and Tiny ImageNet.
Our results are shown in Tab. 3 and Fig. 8. All experiments
are conducted on a single scale since the input sizes of
these datasets are small. Our method obtains consistency of
1∼3% gains. In particular, our loss values are usually larger
than the baselines (except BYOL, which is unstable since it
has no negative pairs), but the accuracy is still superior.
Results on IamgeNet with MoCo V2. As shown in Tab. 4,
our method obtain 1.1% improvement than baseline MoCo
V2. Employing multi-scale training can further boost accu-
racy by 2.3%. It is possible that tuning the hyperparameters

Figure 10. Linear classification accuracy of Top-1 (left) and Top-5
(right) with MoCo V2 and ours on ImageNet dataset.

in MoCo V2 like temperature to fit our mixed training sam-
ples has the potential to further improve the performance.

5.5. Downstream Tasks

In this section, we evaluate the transferability of our learned
representation on the object detection task. We use PASCAL
VOC (Everingham et al., 2010) and COCO (Lin et al., 2014)
as our benchmarks and we exactly follow the same setups
and hyperparameters of the prior works (He et al., 2019;
Wu et al., 2018; Misra & van der Maaten, 2019) on the
transfer learning stage. We use Faster R-CNN (Ren et al.,
2015) and Mask R-CNN (He et al., 2017) implemented in
Detectron2 (Wu et al., 2019) with a ResNet-504 backbone.

PASCAL VOC. We fine-tune our models on the split of
trainval07+12 and evaluate on the VOC test2007
following (Wu et al., 2018; He et al., 2019; Misra & van der
Maaten, 2019). It can be observed that significant improve-
ments are consistently obtained by our proposed mixtures.
COCO. We fine-tune on the train2017 and evaluate
on the val2017 split. The total training budget is 180K
iterations. The whole schedule follows the Detectron2
(coco R 50 C4 2×) default setting. Our results are shown
in Tab. 5 (b), it can be observed that our results are consis-
tently better than the baseline by a significant margin.

4https://github.com/pytorch/vision.

https://github.com/pytorch/vision
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Table 3. Linear and 5-nearest neighbors classification results for different loss functions and datasets with a ResNet-18 backbone. Table
is adapted from (Ermolov et al., 2020) for strictly fair comparisons. Note that MoCo is trained with symmetric loss, 1000 epochs and
evaluated with 200 in kNN monitor∗ following https://github.com/facebookresearch/moco of CIFAR datasets.

Method CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
linear ours 5-nn ours linear ours 5-nn ours linear ours 5-nn ours linear ours 5-nn ours

SimCLR (Chen et al., 2020a) 91.80 92.35 88.42 89.74 66.83 68.83 56.56 58.82 90.51 90.86 85.68 86.16 48.84 49.58 32.86 34.46
BYOL (Grill et al., 2020) 91.73 94.20 89.45 93.03 66.60 71.50 56.82 63.83 91.99 93.34 88.64 90.46 51.00 53.39 36.24 39.27
Whitening (W = 2) (Ermolov et al., 2020) 91.55 93.04 89.69 91.33 66.10 70.12 56.69 61.28 90.36 92.21 87.10 88.88 48.20 51.33 34.16 36.78
Whitening (W = 4) (Ermolov et al., 2020) 91.99 93.18 89.87 91.70 67.64 69.70 56.45 60.74 91.75 91.96 88.59 88.71 49.22 50.67 35.44 36.13
MoCo (Symmetric Loss) (He et al., 2019) – – 90.49∗ 92.25∗ – – 65.49∗ 68.83∗ – – – – – – – –

Arch. Method #Params Budget (#ep) Top-1 Acc. (%)
R50 MoCo 24 200 60.6
R50 CMC 24 200 66.2
R50 SimCLR 24 200 66.6
R50 MoCo V2 24 200 67.5
R50 MoCo V2 + Ours 24 200 68.6↑1.1
R50 MoCo V2 + Ours† 24 200 69.8↑2.3
R50 PIRL 24 800 63.6
R50 SimCLR 24 1000 69.3
R50 MoCo V2 24 800 71.1
R50 MoCo V2 + Ours 24 800 71.8↑0.7

Table 4. Comparison of linear classification on standard ImageNet.
†denotes our result using multi-scale training. Note that all the
hyperparameters follow the baseline MoCo V2 so they may not be
optimal with our mixture, thus the gains are generally “minima”.

.
5.6. Visualization and Analysis

Learned representations. To further explore what our
model indeed learned, we visualize the embedded features
in Fig. 11 from baseline MoCo (left) and our mixture model
(right) using t-SNE with the last conv-layer features (128-
dimension) from ResNet-18. Our model has more separate
embedding clusters, especially on classes 9, 8 and 1.

Figure 11. Visualization of feature embedding on CIFAR-10.

Figure 12. Illustration of weight distributions at 1, 10, 20, 30, 40
and 50-th conv layers in a ResNet-50. Full layers are in Appendix.

How do image mixtures help representation ability? We
visualize the histogram of weights in particular convolu-

Pre-train AP50 AP AP75

Random init. 60.2 33.8 33.1
Supervised IN-1M 81.3 53.5 58.8
MoCo V2 (200ep) 82.4 57.0 63.6

Ours (200ep) 83.0↑0.6 57.7↑0.7 64.3↑0.7

MoCo V2 (800ep) 82.5 57.4 64.0
Ours (800ep) 83.2↑0.7 58.1↑0.7 65.2↑1.2

Ours (200ep), MS 83.2 57.8 64.5

(a) Faster R-CNN, R50-C4 on PASCAL VOC

Pre-train AP AP50 AP75

Random init. 35.6 54.6 38.2
Supervised IN-1M 40.0 59.9 43.1
MoCo V2 (200ep) 40.9 60.7 44.4

Ours (200ep) 41.2↑0.3 60.9↑0.2 44.7↑0.3

(b) Mask R-CNN, R50-C4 2× on COCO

Table 5. Object detection results fine-tuned on PASCAL VOC
(a) and COCO (b). On VOC, the training and evaluation sets
are trainval07+12 and test2007, and on COCO are the
train2017 and val2017. All models are fine-tuned for 24k
iterations on VOC and 180k on COCO. On VOC dataset, we run
three trials and report the means as the final results in this table.

tional layers, as shown in Fig. 12. We can see our weight
distributions always have a wider scope of values, while
fewer elements are close to zero. This phenomenon re-
flects the larger capacity of our network since weights in
our model have more status to be in.

6. Conclusion
We have investigated the feasibility of mixture operations
in an unsupervised scheme, and proposed the strategy of
image mixtures and corresponding label re-assignment for
flattening inputs and predictions in various architectures of
unsupervised frameworks. Through extensive experiments
on SimCLR, BYOL, MoCo V1&V2, etc., and downstream
tasks like object detection, we have shown that neural net-
works trained with our newly constructed input space have
better representation capability in terms of generalization
and transferability, as well as better robustness for different
pretext tasks or frameworks (contrastive or non-contrastive
learning, with or without memory banks, multi-scale train-
ing). Easy to implement and only incurring a small addi-
tional computational cost, we hope the proposed method can
be a useful technique for the unsupervised learning problem.

https://github.com/facebookresearch/moco
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Appendix

In this appendix, we provide details omitted in the main text,
including:

• Section A: Implementation details in unsupervised pre-
training and linear evaluation on non-ImageNet and Ima-
geNet. (Sec. 5.3 “Implementation Details in Pre-training”
and Sec. 5.4. “Linear Classification” of the main paper.)

• Section B: Comparison of both branch mixtures and single
branch mixture. (Sec. 4.1 “Paradigms of Mixtures” of the
main paper.)

• Section C: A PyTorch-like code for our mixture approach.
(Sec. 4.2 “Introduction” of the main paper.)

• Section D: Visualization of entire layers with a ResNet-50
on ImageNet dataset. (Sec. 5.6 “Visualization and Analysis”
of the main paper.)

A. Implementation Details in Unsupervised
Pre-training and Linear Evaluation

Following settings in (Ermolov et al., 2020), on CIFAR-10
and CIFAR-100, we train for 1,000 epochs with learning
rate 3×10−3; on Tiny ImageNet, 1,000 epochs with learning
rate 2×10−3; on STL-10, 2,000 epochs with learning rate
2×10−3. We also apply warm-up for the first 500 iterations,
and a 0.2 learning rate decay at 50 and 25 epochs before
the end of training. Adam is used as the optimizer in all of
the non-ImageNet experiments. The weight decay is used
as 10−6. The batch size is set to K = 512 samples. The
dimension of the hidden layer of the projection head is 1024.
Moreover, we use an embedding size of 64 for CIFAR-10
and CIFAR-100, and 128 for STL-10 and Tiny ImageNet.

Evaluation Protocol on Non-ImageNet. For linear eval-
uation on non-ImageNet datasets, we follow the baseline
codebase configurations (Ermolov et al., 2020) with 500
epochs using the Adam optimizer without any data aug-
mentation. The learning rate is exponentially decayed from
10−2 to 10−6. The weight decay is 5× 10−6.

Evaluation Protocol on ImageNet. For linear evaluation
on ImageNet dataset, we follow the baseline approach (He
et al., 2019; Chen et al., 2020b) and use initial learning rate
of 30 and weight decay of 0. We train with 100 epochs and
the learning rate is multiplied by 0.1 at 60 and 80 epochs.

B. Comparison of Both Branch Mixtures and
Single Branch Mixture

The comparisons between both branch mixtures and single
branch mixture are provided in Table 6, “ours1” and “ours2”
denote the results of these two paradigms of mixtures, re-
spectively. From this table, we have several interesting

Algorithm 1 PyTorch-like Code for Our Mixture Strategy.

# P: probability of global or local level mixtures
# beta: hyperparameter for Beta distribution
# lam: mixture ratio in global-level mixture or

bounding box location in region-level mixture

args.beta = 1.0
for x in loader: # load a minibatch x with N samples

# Probability of choosing global or local level
mixtures

prob = np.random.rand(1)
lam = np.random.beta(args.beta, args.beta)
images_reverse = torch.flip(x[0], (0,))
if prob < args.P:

# global-level mixtures
mixed_images = lam * x[0] + (1 - lam) *

images_reverse
mixed_images_flip = torch.flip(mixed_images,

(0,))
else:

# region-level mixtures
mixed_images = x[0].clone()
bbx1, bby1, bbx2, bby2 = utils.rand_bbox(x[0].

size(), lam)
mixed_images[:, :, bbx1:bbx2, bby1:bby2] =

images_reverse[:, :, bbx1:bbx2, bby1:bby2]
mixed_images_flip = torch.flip(mixed_images,

(0,))
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (x[0].

size()[-1] * x[0].size()[-2]))

# original loss term
loss_ori = model(x)
# In following two losses, we found using ‘‘x[0]’’

may perform better on some particular datasets
# loss for the normal order of mixtures
loss_m1 = model([x[1], mixed_images])
# loss for the reverse order of mixtures
loss_m2 = model([x[1], mixed_images_flip])
# final loss function
loss = loss_ori + lam*loss_m1 + (1-lam)*loss_m2

# update gradients
optimizer.zero_grad()
loss.backward()
optimizer.step()
...

observations: We found that the strategy of both branch
mixtures, i.e., “ours1” performs better than “ours2” on Sim-
CLR (Chen et al., 2020a) across all datasets, but is inferior
with other three baseline approaches. We conjecture the
reason is that SimCLR leverages negative pairs and our mix-
tures can increase the capacity/complexity of composition
on the negative pair set, which is beneficial for the unsuper-
vised representation learning. However, other three baseline
approaches do not use negative pairs in their frameworks,
so the advantage of enlarged capacity cannot be utilized by
these methods. Also, “ours1” has no additional mixture ratio
information if comparing to “ours2”, so basically, “ours2”
is a superior design. Nevertheless, in most cases, both of
these two paradigms are still better than the baseline results.

C. A PyTorch-like (Paszke et al., 2019) Code
for Our Mixture Strategy

The pseudocode of our mixture method is shown in Algo-
rithm 1. Note that this is a demonstration for the circum-
stance that the memory banks are not existing in the frame-
works, such as SimCLR (Chen et al., 2020a), BYOL (Grill
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Table 6. Classification accuracy of Top-1 on ResNet-18 using a linear classifier and a 5-nearest neighbors classifier with different loss
functions and datasets. Ours1 and ours2 denote the results of both branch mixtures and single branch mixture, respectively. MoCo is
trained with symmetric loss, 1000 epochs and evaluated with 200 in kNN monitor∗ following https://github.com/facebookr
esearch/moco of CIFAR datasets.
Method CIFAR-10 CIFAR-100 STL-10

linear ours1 ours2 5-nn ours1 ours2 linear ours1 ours2 5-nn ours1 ours2 linear ours1 ours2 5-nn ours1 ours2
SimCLR (Chen et al., 2020a) 91.80 93.11 92.35 88.42 90.06 89.74 66.83 69.47 68.83 56.56 59.34 58.82 90.51 91.16 90.86 85.68 87.29 86.16

BYOL (Grill et al., 2020) 91.73 93.37 94.20 89.45 91.86 93.03 66.60 68.75 71.50 56.82 61.21 63.83 91.99 90.53 93.34 88.64 87.68 90.46

W-MSE 2 (Ermolov et al., 2020) 91.55 92.77 93.04 89.69 91.06 91.33 66.10 69.44 70.12 56.69 59.16 61.28 90.36 89.28 92.21 87.10 85.59 88.88

W-MSE 4 (Ermolov et al., 2020) 91.99 91.98 93.18 89.87 89.85 91.70 67.64 67.63 69.70 56.45 57.46 60.74 91.75 90.95 91.96 88.59 87.86 88.71

MoCo (Symmetric Loss) (He et al., 2019) – – – 90.49∗ 90.35∗ 92.25∗ – – – 65.49∗ 66.01∗ 68.83∗ – – – – – –

Figure 13. Weight distributions from all the layers of a ResNet-50 on ImageNet with baseline MoCo V2 and our mixture trained model.

et al., 2020) and Whitening (Ermolov et al., 2020) ap-
proaches. If employing a memory bank in the approach,
it is required to deal with the memory bank mechanism so it
needs a few additional non-core lines, but the central codes
are entirely the same as we presented in Algorithm 1.

D. Visualizations of All Convolutional Layers
As shown in Figure 13, we visualize the weight distributions
from all convolutional layers of a ResNet-50 on ImageNet
with the baseline MoCo V2 model and our mixture trained
model. It can be observed that our weight distributions
always have a wider scope of values, meanwhile, fewer
elements of weight values are close to zero.

https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco

