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Abstract. While Knowledge Distillation (KD) has been recognized as
a useful tool in many visual tasks, such as supervised classification and
self-supervised representation learning, the main drawback of a vanilla
KD framework is its mechanism that consumes the majority of the com-
putational overhead on forwarding through the giant teacher networks,
making the entire learning procedure inefficient and costly. The recently
proposed solution ReLabel suggests creating a label map for the entire
image. During training, it receives the cropped region-level label by RoI
aligning on a pre-generated entire label map, which allows for efficient
supervision generation without having to pass through the teachers re-
peatedly. However, as the pre-trained teacher employed in ReLabel is
from the conventional multi-crop scheme, there are various mismatches
between the global label-map and region-level labels in this technique,
resulting in performance deterioration compared to the vanilla KD. In
this study, we present a Fast Knowledge Distillation (FKD) framework
that replicates the distillation training phase and generates soft labels
using the multi-crop KD approach, meanwhile training faster than ReLa-
bel since no post-processes such as RoI align and softmax operations are
used. When conducting multi-crop in the same image for data loading,
our FKD is even more efficient than the traditional image classifica-
tion framework. On ImageNet-1K, we obtain 80.1% Top-1 accuracy on
ResNet-50, outperforming ReLabel by 1.2% while being faster in train-
ing and more flexible to use. On the distillation-based self-supervised
learning task, we also show that FKD has an efficiency advantage.

1 Introduction

Knowledge Distillation (KD) [16] has been a widely used technique in various
visual domains, such as the supervised recognition [29,49,48,23,34,2] and self-
supervised representation learning [32,9,4]. The mechanism of KD is to force the
student to imitate the output of a teacher network or ensemble teachers, as well
as converge on the ground-truth labels. Given the parameters θ of the target
student at iteration (t), we can learn the next iteration parameters θ(t+1) by
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Table 1. Feature-by-feature comparison between ReLabel [52] and our FKD.

Method Generating label Label storage Info. loss Training

Vanilla KD Implicit None No Slow
ReLabel [52] Fast Efficient Yes Fast
FKD (Ours) Slow Efficient No Faster

minimizing the following objective which contains two terms:

θ
(t+1)
student = arg minθ∈Θ

1
N

∑N
n=1(1− λ)H (yn,Sθ (xn))

+λH
(
T (t)(xn),Sθ (xn)

) (1)

where yn is the ground-truth for n-th sample. T (t) is the teacher’s output at iter-
ation (t) and Sθ(xn) is the student’s prediction for the input sample xn. H is the
cross-entropy loss function. λ is the coefficient for balancing the two objectives.
The first term aims to minimize the entropy between one-hot ground-truth label
and student’s prediction while the second term is to minimize between teacher
and student’s predictions. The teacher T can be pre-trained in either supervised
or self-supervised manners. Many literature [35,52,2,34] have empirically shown
that the first term of true hard label in Eq. 1 is not required on larger-scale
datasets like ImageNet [7] with more training budget if the teacher or ensem-
bled teachers are accurate enough. In this work, we simply minimize the soft
predictions between teacher and student models for the fast distillation design.

The inherent disadvantage in such a paradigm, according to KD’s definition,
is that a considerable proportion of computing resources is consumed on passing
training data through large teacher networks to produce the supervision T (t)

in each iteration, rather than updating or training the target student parame-
ters. Intuitively, the forward propagation through teachers can be shared across
epochs since the parameters of them are frozen for the entire training. Based on
this perspective, the vanilla distillation framework itself is inefficient, and how
to reduce or share the forward computing of teacher networks across different
epochs becomes the core for accelerating KD frameworks. A natural solution to
overcome this drawback is to generate one probability vector as the soft label for
each training image in advance, then reuse the pre-generated soft labels circu-
larly for different training epochs. However, in modern neural network training,
it is usually imposed various data augmentation strategies to avoid overfitting,
particularly the random crop technique. This causes the inconsistency where the
global-level soft vector for the entire image cannot precisely reflect the true prob-
ability distribution of the local image region after applying these augmentations.

To address the data augmentation, specially random-crop caused inconsis-
tency issue in generating one global vector to the region-level input, while, pre-
serving the advantage of informative soft labels, ReLabel [52] proposes to store
the global label map from a pre-trained strong teacher and reutilize cross epochs
by RoI align [13], as shown in Fig. 1 (left). However, because of the inconsistent
processes of input on teachers, this strategy is essentially not equivalent to vanilla
KD procedure. The mismatches are primarily from two factors: (i) the teacher
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Fig. 1. Mechanism explanation of ReLabel and Fast Knowledge Distillation (FKD)
framework. In label generation phase, ReLabel produces global-level label map through
feeding the whole images into the pre-trained teacher, while FKD inputs regions of im-
ages, and maintains a set of soft labels. In network training phase, ReLabel employs RoI
Align and Softmax to obtain the corresponding cropped labels for aligning the input,
in contrast, FKD directly assigns the target soft label without any post-processing.

is usually trained with a random-crop-resize scheme, whereas, in ReLabel, the
global label map is obtained by feeding into the whole image. Since in distilla-
tion the random-crop-resize is employed in the input space, thus the global label
map cannot reflect the real soft distribution for image regions; (ii) RoI align
will involve unexpected predictions on label maps, which cannot guarantee the
sameness from this strategy and vanilla KD, thus, information loss exists.

In this work, we introduce a Fast Knowledge Distillation (FKD) framework to
overcome the mismatching drawback and further avoid information loss on soft
labels. Our strategy is straightforward: As shown in Fig. 1 (right), in the label
generation phase, we directly store the soft probability from multiple random-
crops into the label files, together with the coordinates and other data augmen-
tation status like flipping. During training, we assign these stored coordinates
back to the input image to generate the crop-resized input for passing through
the networks, and compute the loss with the corresponding soft labels. The ad-
vantages of such a strategy are twofold: (i) Our region-based label generating
process is identical to vanilla KD, so the obtained soft label for each input region
is the same as oracle, indicating that no information is lost during the label cre-
ation phase; (ii) Our training phase enjoys a faster pace since no post-process is
required, such as RoI align, softmax, etc. We can further assign multiple regions
from the same image in a mini-batch to lessen the burden of data loading.

We demonstrate the advantages of our FKD in terms of accuracy and train-
ing speed on supervised and self-supervised learning tasks. In the supervised
learning scenario, we compare the baseline ReLabel and vanilla KD (Oracle)
from scratch across a variety of backbone network architectures, such as CNNs,
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vision transformers, and the competitive MEAL V2 framework with pre-trained
initialization. Our FKD is more than 1% higher and slightly faster than ReLabel
on ImageNet-1K, and 3∼5× faster than oracle KD and MEAL V2 with similar
performance. On the self-supervised distillation task, we employ S2-BNN as the
baseline for verifying the speed advantage of our proposed efficient framework.

Our contributions of this work:
- We present a fast knowledge distillation (FKD) framework that achieves the

same high-level performance as vanilla KD, while keeping the same fast training
speed and efficiency as non-KD approach without sacrificing performance.

- We reveal a discovery that in image classification frameworks, one image
can be sampled many times with multiple crops within a mini-batch to facilitate
data loading and speed up training, meanwhile obtaining better performance.

- To demonstrate the effectiveness and versatility of our approach, we perform
FKD on a variety of tasks and distillation frameworks, including supervised
classification and self-supervised learning with better results than prior art.

2 Related Work

Knowledge Distillation. The principle behind Knowledge Distillation [16]
is that a student is encouraged to emulate or mimic the teachers’ prediction,
which helps student generalize better on unseen data. One core advantage of
KD is that the teacher can provide softened distribution which contains richer
information about input data compared to the traditional one-hot labels, espe-
cially when the data augmentation such as random-crop is used on the input
space. Distillation can avoid incorrect labels by predicting them from the strong
teachers in each iteration, which reflects the real situation of the transformed
input data. We can also impose a temperature on the logits to re-scale the out-
put distributions from teacher and student models to amplify the inter-class
relationship on supervisions. Recently, many variants and extensions are pro-
posed [24,18,44,53,23,25,34,48,50,6,36], such as employing internal feature rep-
resentations [29], adversarial training with discriminators [31], transfer flow [49],
contrastive distillation [40], patient and consistent [2], etc. For the broader
overviews of related methods for knowledge distillation, please refer to [11,43].
Efficient Knowledge Distillation. Improving training efficiency for knowl-
edge distillation is crucial for pushing this technique to a wider usage scope in
real-world applications. Previous efforts in this direction are generally not suffi-
cient. ReLabel [52] is a recently proposed solution that addresses this inefficient
issue of KD surpassingly. It generates the global label map for the strong teacher
and then reuses them through RoI align across different epochs. Our proposed
FKD lies in an essentially different consideration and solution. We consider the
characteristics of vanilla KD to generate the randomly-cropped region-level soft
labels from the strong teachers and store them, then reuse them by allocating to
different epochs in training. Our approach enjoys the same accuracy as vanilla
KD and the same or faster training speed as regular non-KD classification frame-
works, making it superior to ReLabel in both performance and training speed.
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Fig. 2. Illustration of label dis-
tributions of ReLabel, our FKD
full label and our quantized la-
bel (Top-5). “MS” denotes the
marginal smoothed labels, more
details can be referred in Sec. 3.5.
Gray numbers in each block are the
corresponding partial (as limited
by space) probabilities/soft labels
from different frameworks.

3 Approach

In this section, we begin by introducing several observations and properties from
ReLabel’s global-level soft label and FKD’s region-level soft label distributions.
Then, we present the detailed workflow of our FKD framework and elaborately
analyze the generated label quality, training speed and the applicability on su-
pervised and self-supervised learning. Finally, we analyze different strategies of
soft label compression and provide their storage requirements for practical usage.

Preliminaries: Limitations of Previous Solution
According to the mechanism of ReLabel which is enabled by RoI align on global
map, it is an approximation solution that inevitably will lose information on
labels compared to the vanilla KD of region-level soft labels. In Fig. 2, we visu-
alize the region-level label distributions of ReLabel and FKD on ImageNet-1K,
and several empirical observations are noticed: (i) ReLabel is more confident in
many cases of the regions, so the soft information is weaker than FKD. We ana-
lyze this is because ReLabel feeds the global images into the network instead of
local regions, which makes the generated global label map encode more category
information and ignore the backgrounds, forcing the soft label too close to the
semantic ground-truth, as shown in Fig. 2 (row 1). Though sometimes the max-
imal probabilities are similar between ReLabel and FKD, FKD contains more
informative subordinate probabilities in the label distribution, while ReLabel’s
are equally distributed, as shown in Fig. 2 (row 2); (ii) For some outlier regions,
FKD is substantially more robust than ReLabel, such as the loose bounding
boxes of objects, partial object, etc., as shown in Fig. 2 (row 3); (iii) In some
particular circumstance, ReLabel unexpectedly collapsed with nearly uniform
distribution, while FKD still works well, as shown in the bottom row of Fig. 2.

Moreover, there are existing mismatches between the soft label from ReLabel
and oracle teacher prediction in KD when employing more data augmentations
such as Flip, Color jittering, etc., since these augmentations are randomly ap-
plied during training. In ReLabel design, we cannot take them into account and
prepare in advance when generating the global label map. In contrast, FKD is ad-
equate to handle this situation: it is with ease to involve extra augmentations and
record all information (ratio, degree, coefficient, etc.) for individual regions from
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the same or different images, and generate corresponding soft label by feeding
the transformed image regions into the pre-trained teacher networks. However,
this strategy will increase the requirement of storage, so if it is budgeted, the
alternative is to perform extra augmentations after receiving the cropped image
regions during training, similar to ReLabel. Note that this will cause slightly mis-
match between the transformed samples and corresponding soft labels, which is
similar to the conventional augmentation mechanism but with soft labels.

3.1 Fast Knowledge Distillation

In a traditional visual training system, the deep network propagation and data
loading are typically two main bottlenecks for resources. However, in a distilla-
tion framework, huge teachers have been the key training burden in addition to
these computing demands. Our FKD seeks to address this intractable problem.
Label Generation Phase. Following the regular random-crop resize training
strategy, we randomly crop M regions from one image and employ other aug-
mentations like flipping on them, then feed these regions into the teachers to
generate the corresponding soft label vectors Pi, i.e., Pi = T (Ri) where Ri is
the transformed region by transformations Fi and T is the pre-trained teacher
network, i is the region index. We store all the region coordinates and augmenta-
tion hyper-parameters {F} together with the soft label set {P } for the following
training phase, as shown in Fig. 1 (upper right). A detailed analysis of how to
store these required values on hard drive is provided in the following section.
Training Phase. In the training stage, instead of randomly generating crops
as the conventional image classification strategy, we directly load the label file,
and assign our stored crop coordinates and data augmentations for this partic-
ular image to prepare the transformed region-level inputs. The corresponding
soft label will be used as the supervision of these regions for training. With the
cross-entropy loss, the objective is: L = −

∑
iPilogSθ(Ri), where Sθ(Ri) is the

student’s prediction for the input region Ri, θ is the parameter of the student
model that we need to learn. The detailed training procedure is shown in Fig. 1.

3.2 Higher Label Quality

Distance Analysis. We analyze the quality of various formulations of labels
through the entropy distance with measures on their mutual cross-entropy ma-
trix. We consider three types of labels: (1) human-annotated one-hot label,
ReLabel, and our FKD. We also calculate the distance of the predictions on
four pre-trained models with different accuracies, including: vanilla PyTorch
pre-trained model (weakest), Timm pre-trained model [46] (strongest), ReLabel
trained model and FKD trained model. An overview of our illustration is shown
in Fig. 3. The upper curves, as well in (2), are averaged cross-entropy across 50
classes of (ReLabel→FKD), (ReLabel→One-hot) and (FKD→One-hot). Here,
we derive an important observation:

(DCER→F = −PFKDlogPReLabel) > (DCER→O OR DCEF→O) (2)
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where DCER→F is the cross-entropy value of ReLabel → FKD. Essentially, FKD
soft label can be regarded as the oracle KD label and DCER→F is the distance to
such “KD ground truth”. From Fig. 3 (2) we can see its distance is even larger
than ReLabel and FKD to the one-hot label. Since ReLabel (global-map soft
label) and FKD (region-level soft label) are greatly discrepant from the one-hot
hard label, the gap between ReLabel and FKD (“KD ground truth”) is fairly
significant and considerable. If we shift attention to the curves of DCER→O and
DCEF→O, they are highly aligned across different classes with similar values. In
some particular classes, DCEF→O are slightly larger. This is sensible as one-hot
label is basically not the “optimal label” we desired.

In the bottom group of Fig. 3 (3), the entropy values are comparatively
small. This is because the curves are from the pre-trained models with decent
performance under the criterion of one-hot label. Among them, MTimm has the
minimal cross-entropy to the one-hot label, this is expected since timm model is
optimized thoroughly to fit one-hot label with the highest accuracy. In Fig. 3 (4),
DCETimm→F and DCEPT→F lie in the middle of DCETimm→R and DCEPT→R with smaller
variances. This reflects that FKD is more stable than Relabel pre-trained models.

3.3 Faster Training Speed

Multi-crop sampling within a mini-batch. As illustrated in Fig. 1 (right),
we can use multiple crops in the same image to facilitate loading image and label
files. Intuitively, this will reduce the diversity of training samples in a mini-batch
since some of the samples are from the same image. However, our experimental
results indicate that it will not hurt the model’s performance, in contrast, it even
boosts the accuracy when the number of crops from the same image is within a
reasonable range (e.g., 4∼8). We analyze this is because it can mitigate samples’
variance dramatically for each mini-batch to make training more stable.
Serrated learning rate scheduler. Since FKD samples multiple crops (#crop)
from one image, when iterating over the entire dataset once, we actually train
the dataset #crop epochs with the same learning rate. It has no effect while
using milestone/step lr scheduler, but it will change the lr curve to be serrated if
applying continuous cosine or linear learning rate strategies. The accuracy may
also be enhanced by multi-crop training for this reason.
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Fig. 4. Different label compression strategies and storage analyses for our fast knowl-
edge distillation (FKD) framework. See Sec. 3.5 for more details.
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Fig. 5. Training workflow and analysis for vanilla KD, ReLabel and our fast knowledge
distillation (FKD) framework. Maroon dashed boxes indicate that the processes are
only required by ReLabel while not existing in our FKD. Note that “generate soft
labels” indicates RoI align + softmax in ReLabel. We both have the recovering process
from the compressed label to full soft label as discussed in Sec. 3.3.

Training Time Analysis:
1. Data Load Data loading strategy in FKD is efficient. For instance, when
training with a mini-batch of 256, traditional image classification framework
requires to load 256 images and ReLabel will load 256 images + 256 label files,
while in our method, FKD only needs to load 256

#crop images + 256
#crop label files,

even faster than traditional training if we choose a slightly larger value for #crop
(when #crop >2)4.
2. Label Preparation We assign #crop regions in an image to the current
mini-batch for training. Since we store the label probability after softmax (in
supervised learning), we can use assigned soft labels for the mini-batch samples
directly without any post-process. This assignment is fast and efficient in imple-
mentation with a randperm function in PyTorch [26]. If the label is compressed
using the following strategies, we will operate with an additional simple recov-
ering process (as shown in Fig. 4) to obtain D-way soft label distributions. Note
that ReLabel also has this process so the time consumption on this part will be
similar to ReLabel. A detailed item-by-item workflow is shown in Fig. 5.

3.4 Training Self-supervised Model with Supervised Scheme

In this section, we introduce how to apply our FKD to the self-supervised learn-
ing (SSL) task with a faster training speed than the widely-used Siamese SSL

4 Assume that loading each image and label file will consume similar time by CPUs.
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Table 2. Detailed comparison of different label quantization/compression strategies on
ImageNet-1K. M is the number of crops within an image during soft label generation,
here we choose 200 crops as an example to calculate space consumption. Nim is the
number of images, i.e., 1.2M for ImageNet-1K. SLM is the size of label map. Cclass is
the number of classes. DDA is the parameter dimension of data augmentations to store.

ReLabel (Full) ReLabel (Top-5) Full Hard Smoothing M Re-Norm (K=5) MS (K=5) MS (K=10)

Calculation Nim×SLM×Cclass Nim×SLM×2CTop-5 Nim×(Cclass+DDA) Nim×(1+DDA) Nim×(2+DDA) Nim×(2K+DDA) Nim×(2K+DDA) Nim×(2K+DDA)
Dim. of Soft Label 15× 15× 1, 000 15× 15× 10 M×1,000 M×1 M×2 M×10 M×10 M×20
+ Coordinate & Flip – – M×1,005 M×6 M×7 M×15 M×15 M×25
Real Cons. on Disk ∼1TB 10GB ∼0.9TB 5.3GB 6.2GB 13.3GB 13.3GB 22.2GB

frameworks. The label generation (from the self-supervised strong teachers), la-
bel preparation and training procedure are similar to the supervised scheme.
However, we keep the projection head in original SSL teachers as soft labels fol-
lowing [32] and store the soft labels before softmax for operating temperature5.

3.5 Label Compression and Storage Analysis

We consider and formulate the following four strategies for compressing soft label
for storage, an elaborated comparison of them can be referred to Table 2.

– Hardening. In hardening quantization strategy, the hard label YH is gener-
ated using the index of the maximum logits from the teacher predictions of
regions. In general, label hardening is the one-hot label with correction by
strong teacher models in region-level space.

YH = argmax
c

zFKD(c) (3)

where zFKD is the logits for each randomly cropped region produced by FKD.
– Smoothing. Smoothing quantization replaces one-hot hard label YH with a

mixture of soft yc and a uniform distribution same as label smoothing [37]:

yS
c =

{
pc if c = hardening label,
(1− pc)/(C − 1) otherwise.

(4)

where pc is the probability after softmax at c-th class and C is the number of
total classes. (1−pc)/(C−1) is a small value for flattening the one-hot labels.
yS
c ∈ YS is the smoothed label at c-th class.

– Marginal Smoothing with Top-K (MS). Marginal smoothing quantization
reserves more soft information (Top-K) of teacher prediction than the single
smoothing label YS:

yMS
c =


pc if c ∈ {Top−K},

1−
∑

c∈{Top−K}
pc

C−K otherwise.

(5)

where yMS
c ∈ YMS is the marginally smoothed label at c-th class.

5 The temperature τ is applied on the logits before the softmax operation for self-
supervised distillation.
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Table 3. Comparison between ReLabel and our FKD on ImageNet-1K. “♦” denotes
our retraining following the same protocol in the Appendix w/o distillation. Note that
more augmentations (e.g., CutMix [51]) will further improve the accuracy, as provided
in Sec. 4.1. Models are trained from scratch.

Method Network Top-1 (%) Top-5 (%) Training Time

Vanilla♦ ResNet-50 78.1 94.0 1.0
ReLabel [52] ResNet-50 78.9 – ↑0.5% [52]
FKD (Ours)w/o warmup&colorj ResNet-50 79.8 94.6 ↓0.5%
FKD (Ours) ResNet-50 80.1+1.2 94.8 ↓0.5%

Vanilla♦ ResNet-101 79.7 94.6 1.0
ReLabel [52] ResNet-101 80.7 – ↑0.5% [52]
FKD (Ours)w/o warmup&colorj ResNet-101 81.7 95.6 ↓0.5%
FKD (Ours) ResNet-101 81.9+1.2 95.7 ↓0.5%

– Marginal Re-Norm with Top-K (MR). Marginal re-normalization will re-
normalize Top-K predictions to

∑
c∈{Top−K} pc =1 and maintain other logits

to be zero (Different from ReLabel, we use normalize to calibrate the sum of
Top-K predictions to 1, since our soft label is stored after softmax.):

yM
c =

{
pc if c ∈ {Top−K},
0 otherwise.

(6)

yMR
c = Normalize(yM

c ) =
yM
c∑C

c=1(yM
c )

(7)

where yMR
c ∈YMR is the re-normalized label at c-th class.

4 Experiments

Experimental Settings and Datasets. Detailed lists of our hyper-parameter
choices are shown in Appendix. Warmup and color jittering are not employed in
the ablation studies. Except for experiments on MEAL V2, we use EfficientNet-
L2-ns-475 [38,48] as the teacher model, we also tried weaker teachers but the
performance in our experiment is slightly worse. For MEAL V2, we follow its orig-
inal design by using SENet154 + ResNet152 v1s ensemble (gluon version [12])
as the soft label. ImageNet-1K [7] is used for the supervised classification and
self-supervised learning. COCO [21] is used for the transfer learning experiments.
Network Architectures. Experiments are conducted on Convolutional Neu-
ral Networks [19], such as ResNet [14], MobileNet [17], FBNet [47], Efficient-
Netv2 [39], and Vision Transformers [42,8], such as DeiT [41], SReT [33]. For
binary backbone, we use ReActNet [22] in the self-supervised experiments.
Baseline Knowledge Distillation Methods.

I ReLabel [52] (Label Map Distillation). ReLabel used the pre-generated global
label maps from the pre-trained teacher for reducing the cost on the teacher
branch when conducting distillation.
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Table 4. Comparison of MEAL V2 [35] and our FKD on ImageNet-1K. “w/ FKD”
denotes the model is trained using the same protocol and hyper-parameters as original
MEAL V2. “♥” represents the training using cosine lr and 1.5× epochs. Models are
trained from the pre-trained initialization.

Method Network #Params Top-1 Top-5 Speedup

MEAL V2 [35] ResNet-50 25.6M 80.67 95.09 1.0
MEAL V2 w/ FKD ResNet-50 25.6M 80.70 95.13 0.3×
MEAL V2 w/ ♥FKD ResNet-50 25.6M 80.91 95.39 0.5×
MEAL V2 [35] MobileNet V3-S0.75 2.04M 67.60 87.23 1.0
MEAL V2 w/ ♥FKD MobileNet V3-S0.75 2.04M 67.83 87.35 0.4×
MEAL V2 [35] MobileNet V3-S1.0 2.54M 69.65 88.71 1.0
MEAL V2 w/ ♥FKD MobileNet V3-S1.0 2.54M 69.94 88.82 0.4×

I MEAL V2 [35] (Fine-tuning Distillation). MEAL V2 proposed to distill stu-
dent network from the pre-trained parameters6 and giant teacher ensemble
for fast convergence and better accuracy.

I FunMatch [2] (Oracle Distillation). FunMatch is a standard knowledge distil-
lation framework with strong teacher models and augmentations. We consider
it as the strong baseline approach for efficient KD when using the same or
similar teacher supervisors.

B S2-BNN [32] (Self-supervised Distillation). S2-BNN is a plain distillation so-
lution for self-supervised learning task. The teacher is pre-learned from the
self-supervised learning methods, such as MoCo V2 [5], SwAV [3], etc.

4.1 Supervised Learning

CNNs.
(i) ReLabel. The comparison with ReLabel is shown in Table 3, using the

training settings introduced in our Appendix, which is the same as ReLabel, our
accuracies on ResNet-50/101 both outperform ReLabel by more than 1.0% with
slightly faster training speed. These significant also consistent improvements of
FKD show great potential and superiority for practical applications.

(ii) MEAL V2. We use FKD to train MEAL V2 models. The results are
shown in Table 4, when employing the same hyper-parameters and teacher net-
works, FKD can speed up 2∼4× without compromising accuracy. Using
cosine lr and more epochs in training further improves the accuracy.

(iii) FunMatch (Oracle). We consider FunMatch as the oracle/strong KD
baseline, our plain FKD w/o extra augmentations is slightly lower than Fun-
Match (80.5%) as they used more augmentations in training. After employing
CutMix, which is similar to the FunMatch training setting, our result (80.9%)7

outperforms FunMatch by 0.4%. Note that FunMatch needs 10× more budget

6 The pre-trained parameter is from timm [45] with version<=0.4.12.
7 The state-of-the-art non-KD training result on ResNet-50 (Timm [46]) with massive

data augmentations is 79.8%, which is 1.1% lower than FKD.

https://github.com/rwightman/pytorch-image-models


12 Z. Shen, E. Xing

Table 5. FKD with supervised Vision Transformer [8] and its variants on ImageNet-1K
using 224×224 input resolution. Models are trained from scratch.

Method Network Epochs #Params (M) FLOPs (B) Extra Data Aug. Top-1 (%) Speedup

DeiT [41] w/o KD ViT-T 300 5.7 1.3 MixUp+CutMix+RA 72.2 –
DeiT [41] w/ KD ViT-T 300 5.7 1.3 MixUp+CutMix+RA 74.5 1.0

ViT [8] (Vanilla) ViT-T 300 5.7 1.3 None 68.7 [15] –
ViT w/ FKD (Ours) ViT-T 300 5.7 1.3 None 75.2 0.15×

SReT [33] w/o KD SReT-LT 300 5.0 1.2 MixUp+CutMix+RA 76.7 –
SReT [33] w/ KD SReT-LT 300 5.0 1.2 MixUp+CutMix+RA 77.7 1.0

SReT [33] (Vanilla) SReT-LT 300 5.0 1.2 None – –
SReT w/ FKD (Ours) SReT-LT 300 5.0 1.2 None 78.7 0.14×

Table 6. Ablation results (Top-1) on ImageNet-1K of different label quantization
strategies. m = 8 is used in this ablation.

Method Network Full Hard Smoothing Mar. Re-Norm (K=5) Mar. Smoothing (K=5) Mar. Smoothing (K=10)

MEAL V2 w/ FKD ResNet-50 80.65 80.20 80.23 80.40 80.58 80.52
FKD (from scratch) ResNet-50 79.48 79.09 79.37 79.23 79.51 79.44

Table 7. Ablation results (Top-1) on ImageNet-1K with different numbers (m) of
cropping regions from the same image within a mini-batch.

Method Network m = 1 m = 2 m = 4 m = 8 m = 16 m = 32

Vanilla ResNet-50 77.18 77.91 78.14 77.89 75.89 70.09
MEAL V2 w/ FKD ResNet-50 80.67 80.70 80.66 80.58 80.36 80.17
FKD (from scratch) ResNet-50 79.59 79.62 79.76 79.51 78.12 74.61

Table 8. ImageNet-1K clarification results on tiny networks.

FBNet-C Arch. FLOPs: 375M Acc.: 75.12% +FKD: 77.13%+2.01%

EfficientNetv2-B0 Arch. FLOPs: 700M Acc.: 78.35% +FKD: 79.94%+1.59%

for training than FKD (2 days vs. 20 days) with the same number of GPUs (e.g.,
8 V100) since they explicitly forward giant teachers at each iteration of training.

(iv) Tiny Models. We also examine the generalization ability using the
mobile-level models, such as FBNet [47], EfficientNetv2 [39] from [45]. As shown
in Table 8, FKD consistently improves the base models by 2.01% and 1.59%,
respectively. The training settings for them are provided in Appendix.

Vision Transformers.

(i) ViT/DeiT. The results are shown in Table 5 of the first group. Our non-
extra augmentation result (75.2%) using ViT-T backbone is better than DeiT-T
with distillation (74.5%), while we only require 0.15× training resources than
DeiT distillation protocol to train the model.

(ii) SReT. We also examine FKD using SReT-LT, result (78.7%) is consis-
tently better than its original KD design (77.7%) with a faster training speed.

Ablations: (i) Effects of Crop Number in Each Image During Train-
ing. We explore the effect of different numbers of crops sampled from the same
image within a mini-batch to the final performance. For the conventional data
preparation strategy, on each image we solely sample one crop for a mini-batch
to train the model. Here, we evaluate the m from 1 crop to 32 crops as shown in
Table 7. Surprisingly, using a few crops from the same image leads to better per-
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Table 9. Linear evaluation results of FKD with self-supervised Binary CNN (ReAct-
Net [22]), Real-valued CNN (ResNet-50 [14]). FKD can speed up training by 3× with
the same or similar linear evaluation performance.

Method Network Teacher #Dims for Distilling Training Epochs Top-1 (%) Speedup

S2-BNN [32] ReActNet MoCo V2-800ep 128 200 61.5 1.0
FKD ReActNet MoCo V2-800ep 128 200 61.7 0.4×
S2-BNN [32] ResNet-50 SwAV/RN50-w4 3000 100 68.7 1.0
FKD ResNet-50 SwAV/RN50-w4 3000 100 68.8 0.3×

formance than the single crop solution with a non-negligible margin, especially
on the traditional image classification system. This indicates that the internal
diversity of samples in a mini-batch has a limit for tolerance, properly reducing
such diversity can mitigate the variance and boost accuracy, while we can also
observe that after m>8, the performance decreases substantially, thus the diver-
sity is basically still critical for learning good status of the model. Nevertheless,
this is a good observation for us to speed up data loading in our FKD framework.

(ii) Effects of Crop Number for Soft Labels During Label Gen-
eration. Ideally, the number of crops is aligned with the number of training
epochs by a shuffling and non-overlapping sampling strategy, which can exactly
replicate the vanilla KD. We found FKD is surprisingly robust on fewer crops
of soft labels, which can maintain a decent accuracy without a significant drop.
We examined 100 crops (4.75G storage), result (79.7%) is tolerably inferior.

(iii) Different Label Compression Strategies. We evaluate the perfor-
mance of different label compression strategies. We use m=8 for this ablation
and the results are shown in Table 6. On MEAL V2 w/ FKD, we obtain the
highest accuracy of 80.65% when using the full soft labels, while on the standard
FKD, the best performance is from Marginal Smoothing (K=5) with 79.51%. In-
creasing K decreases both the accuracies in these two scenarios, we analyze that
larger K will involve more noise or unnecessary minor information on the soft
labels. While, they are still better than the Hard and Smoothing strategies.

4.2 More Comparison on ReaL [1] and ImageNetV2 [27] Datasets

In this section, we provide more results on ImageNet ReaL [1] and ImageNetV2 [27]
datasets. On ImageNetV2 [27], we verify our FKD models on three metrics “Top-
Images”, “Matched Frequency”, and “Threshold 0.7” as ReLabel. We conduct
experiments on two network structures: ResNet-50 and ResNet-101. The results
are shown in Table 10, we achieve consistent improvement over baseline ReLabel
on both ResNet-50 and ResNet-101.

4.3 Self-Supervised Learning

S2-BNN [32] is a pure distillation-based framework for self-supervised learning,
thus the proposed FKD approach is eligible to train S2-BNN [32] in the proposed
way efficiently. We employ SwAV [3] and MoCo V2 [5] pre-trained models as
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Table 10. Results of FKD on ImageNet
ReaL [1] and ImageNetV2 [27] with ResNet-
{50, 101}. ∗ indicates that results are tested
using their provided pre-trained model.

Method ImageNet-1K ReaL
ImageNetV2 ImageNetV2 ImageNetV2
Top-images Matched-frequency Threshold-0.7

ResNet-50:
ReLabel 78.9 85.0 80.5 67.3 76.0
FKD 80.1 85.8 81.2 68.2 76.9

ResNet-101:
ReLabel∗ 80.7 86.5 82.4 69.7 78.2
FKD 81.9 87.1 83.2 70.7 79.1

Table 11. Comparison of transfer
learning performance with ReLabel on
detection and instance segmentation
tasks. The training and evaluation are
conducted on COCO dataset [21].

Method Network
Faster RCNN w/ FPN Mask-RCNN w/ FPN

bbox AP bbox AP mask AP

Baseline ResNet-50 37.7 38.5 34.7
ReLabel ResNet-50 38.2 39.1 35.2
FKD ResNet-50 38.7 39.7 35.9

the teacher networks. Considering that the distribution from the SSL learned
teachers is more flattening than the supervised teacher predictions (meaning that
the subordinate classes from SSL trained teachers carry crucial information), we
use the full soft label in this scenario, and leave the label compression strategies
on SSL task as a future study. We employ ReActNet [22] and ResNet-50 [14]
as the target/student backbones in these experiments. The results are shown in
Table 9, our FKD trained models achieve slightly better performance than S2-
BNN with roughly 3× acceleration since we only use a single branch for training,
the same as traditional classification pipeline that uses soft label and CE loss.
The slight boosts are from our lite data augmentation for FKD when generating
SSL soft labels. This is interesting and it is worth exploring further on the data
augmentation strategies for distillation-based or FKD-equipped SSL methods.

4.4 Transfer Learning

We further examine whether FKD obtained improvements on ImageNet-1K can
be transferred to various downstream tasks. As in Table 11, we present the
results of object detection and instance segmentation on COCO [21] with models
pretrained on ImageNet-1K using FKD. We also employ Faster RCNN [28] and
Mask RCNN [13] with FPN [20] following ReLabel. Over the vanilla baseline and
ReLabel, our FKD pre-trained weights show consistent gains on the downstream
tasks. More visualizations, analyses and discussions are provided in Appendix.

5 Conclusion

It is worthwhile investigating approaches to boost the training efficiency and
speed of vanilla KD given its widespread use and exceptional performance in
training compact and efficient networks. In this paper, we have presented a fast
distillation framework through the pre-generated region-level soft label scheme.
We have elaborately discussed the strategies of compressing soft label for prac-
tical storage and their performance comparison. We identified an interesting
discovery that the training samples within a mini-batch can be cropped from
the same input images to facilitate data loading with better accuracy. We ex-
hibit the effectiveness and adaptability of our framework by demonstrating it on
supervised image classification and self-supervised representation learning tasks.
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Appendix

A Visualization, Analysis and Discussion

To investigate the learned differences of information between ReLabel and FKD,
we depict the intermediate attention maps using gradient-based localization [30].
There are three important observations that align our aforementioned analyses
in Fig. 6 and 7.

(i) FKD’s predictions are less confident than ReLabel with more surround-
ing context; This is reasonable since in random-crop training, many crops are
basically backgrounds (context), the soft predicted label from the teacher model
might be completely different from the ground-truth one-hot label and the train-
ing mechanism of FKD can leverage the additional information from context.

(ii) FKD’s attention maps have a larger active area on the object regions,
which indicates that FKD trained model utilizes more cues for prediction and
also captures more subtle and fine-grained information. However, it is interesting
to see that the guided backprop is more focused than ReLabel.

(iii) ReLabel’s attention is more aligned with PyTorch pre-trained model,
while FKD’s results are substantially unique to them. It implies that FKD’s
learned attention differs significantly from one-hot and global label map learned
models.

B Training Details and Experimental Settings

Training details for Table 3 of the main text. We employ the training set-
tings and hyper-parameters following Table 12, which are the same as ReLabel.
We use 4 as the number of crops in each image during training.

Table 12. Training hyper-parameters and details for ReLabel [52] and FKD used in
Table 3 of the main text.

Method ReLabel [52] or FKD
Teacher EfficientNet-L2-ns-475
Epoch 300
Batch size 1,024
Optimizer SGD
Init. lr 0.1
lr scheduler cosine
Weight decay 1e-4
Random crop Yes
Flipping Yes
Warmup epochs 5
Color jittering Yes
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Table 13. Training hyper-parameters and details for the comparison in Table 5 of the
main text when employing ViT [8], DeiT [41] and SReT [33] as the backbone networks.
Table is adapted from [41].

Method ViT-B [8] DeiT [41]/SReT [33] FKD
Epoch 300 300 300
Batch size 4096 1024 1024
Optimizer AdamW AdamW AdamW
Init. lr 0.003 0.001 0.002
lr scheduler cosine cosine cosine
Weight decay 0.3 0.05 0.05
Warmup epochs 3.4 5 5

Label smoothing None 0.1 None
Dropout 0.1 None None
Stoch. Depth None 0.1 0.1
Repeated Aug None Yes None
Gradient Clip. Yes None None
Rand Augment None 9/0.5 None
Mixup prob. None 0.8 None
Cutmix prob. None 1.0 None
Erasing prob. None 0.25 None

Training details for Table 5 of the main text. When comparing our FKD
with ViT [8]/DeiT [41]/SReT [33] (Table 5 of the main text), we employ the
training settings and hyper-parameters following Table 13.
Training details for Table 8 of the main text. The training settings and
hyper-parameters of FKD with FBNet-C100 [47] and EfficientNetv2-B0 [39]
backbones (Table 8 of the main text) are provided in Table 13 which are the
same as the training protocol on ViT, DeiT and SReT. We use 4 as the number
of crops in each image during training.
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ReLabel FKDBaseInput

Fig. 6. Visualization of learned attention map using GradCAM [30,10]. “Base” in-
dicates the pre-trained PyTorch model. In each group of ReLabel and FKD, left is
Grad-CAM and right is Guided Backprop.

ReLabel FKDInput

Fig. 7. More visualization of response/attention maps.
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