Learning Object Detectors from Scratch Zhiqiang (Jason) Shen

Outline

• DSOD (Deeply Supervised Object Detection)

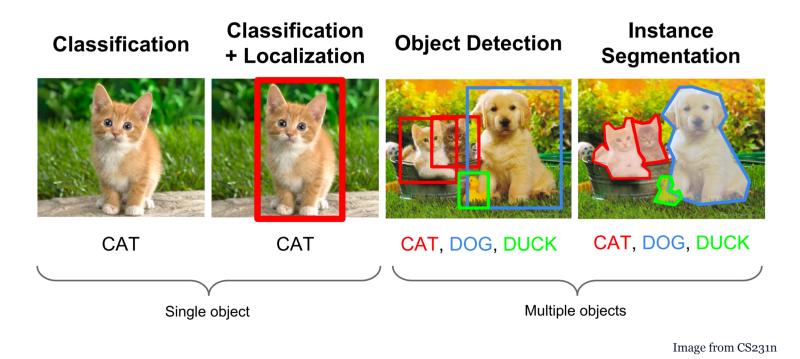
Zhiqiang Shen*, Zhuang Liu*, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and Xiangyang Xue. DSOD: Learning Deeply Supervised Object Detectors from Scratch. *In ICCV 2017.*

• GRP-DSOD (Gated Recurrent Feature Pyramids)

Zhiqiang Shen*, Honghui Shi*, Rogerio Feris, Liangliang Cao, Shuicheng Yan, Ding Liu, Xinchao Wang, Xiangyang Xue, and Thomas S. Huang. Learning Object Detection from Scratch with Gated Recurrent Feature Pyramids. *arXiv:1712.00886.*

DSOD: Learning Deeply Supervised Object Detectors from Scratch Presented at ICCV 2017

Zhiqiang Shen*, Zhuang Liu*, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and Xiangyang Xue. DSOD: Learning Deeply Supervised Object Detectors from Scratch. *In ICCV 2017*.



This repository Search	Pull requests Issues	Marketplace Explore	🌲 + - 🧕
📮 szq0214 / DSOD		● Watch •	36 ★ Unstar 385 % Fork 130
↔ Code ① Issues 20 ① Pull	requests 1 Projects 0	Wiki 🔟 Insights	🔅 Settings
DSOD: Learning Deeply Supervised	d Object Detectors from Scratch. II	n ICCV 2017.	Edi
15 commits	ំរ 1 branch	\bigcirc 0 releases	2 contributors
Branch: master - New pull request		Create new file	Upload files Find file Clone or download
Branch: master - New pull request		Create new file	Upload files Find file Clone or download T
	Initial commit	Create new file	
szq0214 Update README.md	Initial commit add a demo script	Create new file	Latest commit 6a2493d on Nov 22, 201
szq0214 Update README.md		Create new file	Latest commit 6a2493d on Nov 22, 2013 5 months age
<pre>szq0214 Update README.md DSOD300_coco.py DSOD300_detection_demo.py</pre>	add a demo script	Create new file	Latest commit 6a2493d on Nov 22, 2017 5 months age 5 months age
<pre>szq0214 Update README.md DSOD300_coco.py DSOD300_detection_demo.py DSOD300_pascal++.py</pre>	add a demo script Initial commit	Create new file	Latest commit 6a2493d on Nov 22, 2013 5 months age 5 months age 5 months age
 szq0214 Update README.md DSOD300_coco.py DSOD300_detection_demo.py DSOD300_pascal++.py DSOD300_pascal.py 	add a demo script Initial commit Initial commit		Latest commit 6a2493d on Nov 22, 2017 5 months age 5 months age 5 months age 5 months age 5 months age
 szq0214 Update README.md DSOD300_coco.py DSOD300_detection_demo.py DSOD300_pascal++.py DSOD300_pascal.py LICENSE 	add a demo script Initial commit Initial commit update LICENSE	nd	Latest commit 6a2493d on Nov 22, 2017 5 months age 5 months age 5 months age 5 months age 5 months age 5 months age

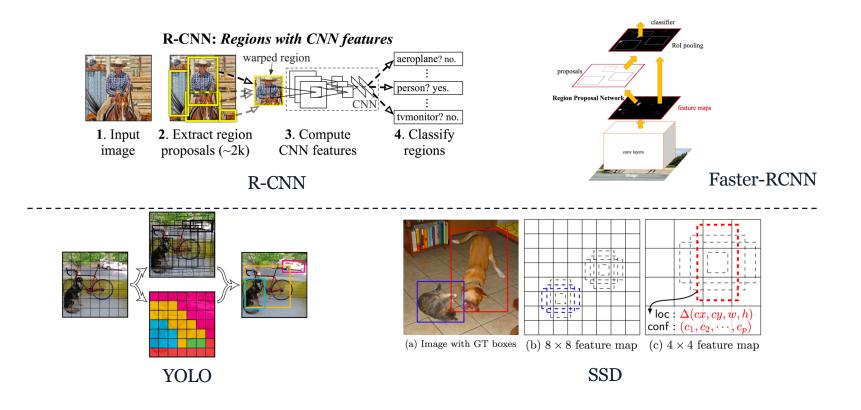
DSOD: Learning Deeply Supervised Object Detectors from Scratch

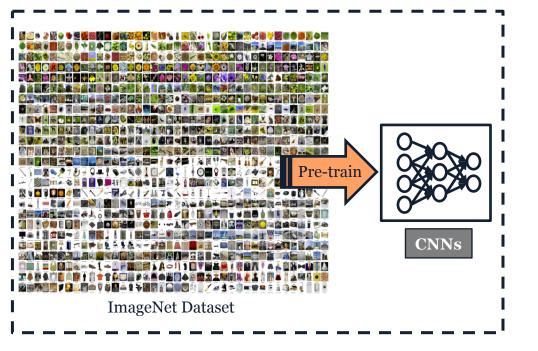
This repository contains the code for the following paper

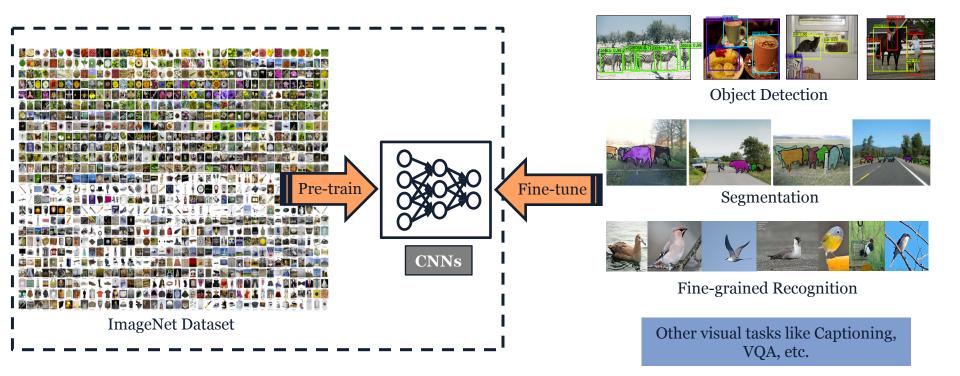

Object Detection vs. Other Computer Vision Problems

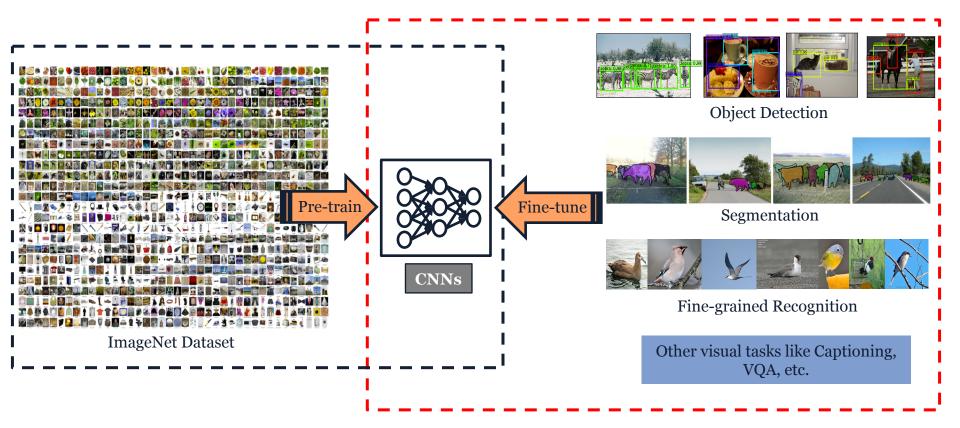
I

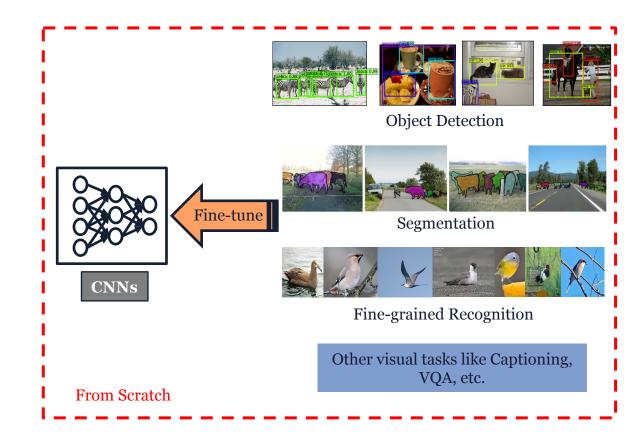
Object Detection


Object Detection


CAT, DOG, DUCK


Typical Detection Methods





Limitations

ImageNet pre-trained models

- Limited structure design space.
- Learning bias.
- Domain mismatch.

Limitations

ImageNet pre-trained models

- Limited structure design space.
- Learning bias.
- Domain mismatch.

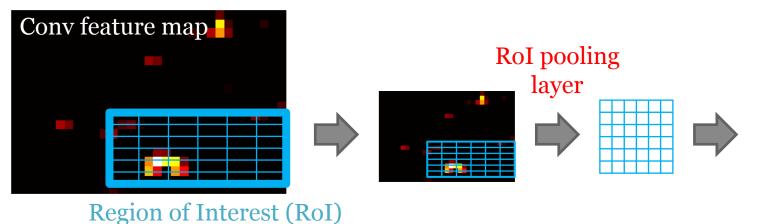
Training from Scratch

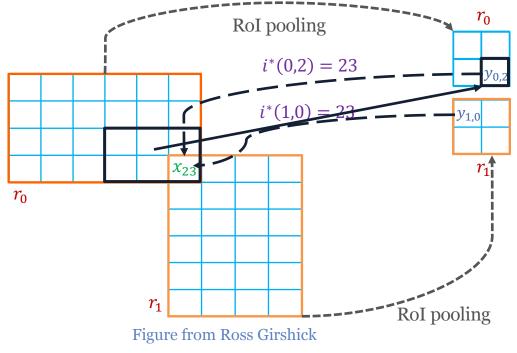
Key Findings (training from scratch)

• *Faster RCNN & R-FCN*: < 15% mAP on VOC without the pre-trained models.

• *SSD*: 69.6% mAP on VOC.

Review: Region of Interest (RoI) pooling




Figure from Ross Girshick

Ross Girshick. "Fast R-CNN". ICCV 2015.

Review: Region of Interest (RoI) pooling

RoI pooling is just like max pooling

Ross Girshick. "Fast R-CNN". ICCV 2015.

Review: Region of Interest (RoI) pooling

- RoI pooling is just like max pooling
- Forward / backward

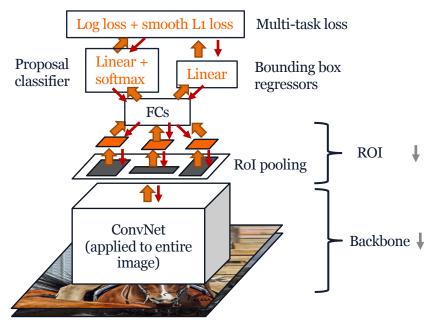
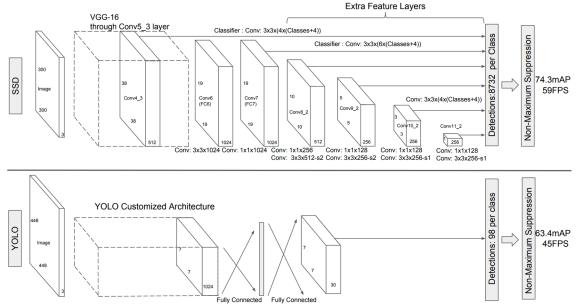
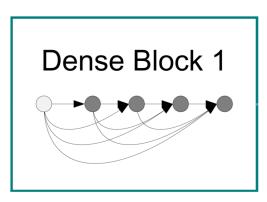


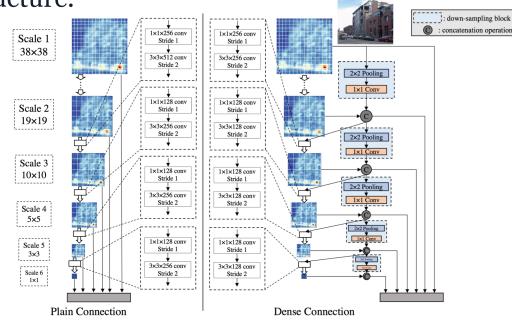
Figure from Ross Girshick


Ross Girshick. "Fast R-CNN". ICCV 2015.

> Proposal-free.


One-stage pipeline

> Proposal-free.



- > Proposal-free.
- > Deep Supervision.

- > Proposal-free.
- Deep Supervision.
- Dense Prediction Structure.

- > Proposal-free.
- > Deep Supervision.
- Dense Prediction Structure.

➢ Stem Block.

	Layers	Output Size (Input $3 \times 300 \times 300$)	DSOD
	Convolution	64×150×150	3×3 conv, stride 2
Stem _	Convolution	64×150×150	3×3 conv, stride 1
Stem	Convolution	128×150×150	3×3 conv, stride 1
-	Pooling	128×75×75	2×2 max pool, stride 2

DSOD architecture

	Layers	Output Size (Input $3 \times 300 \times 300$)	DSOD				
	Convolution	64×150×150	3×3 conv, stride 2				
Stem	Convolution	64×150×150	3×3 conv, stride 1				
Stem	Convolution	128×150×150	3×3 conv, stride 1				
	Pooling	128×75×75	2×2 max pool, stride 2				
	Dense Block	416×75×75	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 6$				
	(1)	410×73×73	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$				
	Transition Layer	416×75×75	1×1 conv				
	(1)	416×38×38	2×2 max pool, stride 2				
	Dense Block	800×38×38	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 8$				
	(2)	800×38×38	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times \circ}$				
	Transition Layer	800×38×38	1×1 conv				
	(2)	800×19×19	2×2 max pool, stride 2				
	Dense Block	1184×19×19	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 8$				
	(3)	1184×19×19	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 8}$				
Transit	tion w/o Pooling Layer (1)	1184×19×19	1×1 conv				
Dense Block		1568 \(10 \(10 \)	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 8$				
	(4)	1568×19×19	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 8}$				
Transi	tion w/o Pooling Layer (2)	1568×19×19	1×1 conv				
DS	SOD Prediction Layers	-	Plain/Dense				

Table 1: DSOD architecture (growth rate k = 48 in each dense block).

Ablation Study on PASCAL VOC2007

			D	SOD30)0			
transition w/o pooling?		\checkmark						
hi-comp factor θ ?			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
wide bottleneck?				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
wide 1st conv-layer?					\checkmark	\checkmark	\checkmark	\checkmark
big growth rate?						\checkmark	\checkmark	\checkmark
stem block?							\checkmark	\checkmark
dense pred-layers?								\checkmark
VOC 2007 mAP	59.9	61.6	64.5	68.6	69.7	74.5	77.3	77.7

Ablation Study on PASCAL VOC2007

Results on PASCAL VOC2007

Method	data	pre-train	backbone network	prediction layer	speed (fps)	# parameters	input size	mAP		
Faster RCNN [27]	07+12	/	VGGNet	-	7	134.7M	$\sim 600 \times 1000$	73.2		
Faster RCNN [27]	07+12	1	ResNet-101	-	2.4*	-	$\sim 600 imes 1000$	76.4		
R-FCN [19]	07+12	✓	ResNet-50	-	11	31.9M	$\sim 600 imes 1000$	77.4		
R-FCN [19]	07+12	✓	ResNet-101	-	9	50.9M	$\sim 600 imes 1000$	79.5		
R-FCNmulti-sc [19]	07+12	✓	ResNet-101	-	9	50.9M	$\sim 600 imes 1000$	80.5		
YOLOv2 [26]	07+12	\checkmark	Darknet-19	-	81	-	352×352	73.7		
SSD300 [21]	07+12	✓	VGGNet	Plain 46		26.3M	300×300	75.8		
SSD300* [21]	07+12	✓	VGGNet	Plain	46	26.3M	300×300	77.2		
Faster RCNN	07+12	×	VGGNet/ResNet-101/DenseNet		Failed					
R-FCN	07+12	×	VGGNet/ResNet-101/DenseNet			Failed				
SSD300S [†]	07+12	×	ResNet-101	Plain	12.1	52.8M	300×300	63.8*		
SSD300S [†]	07+12	×	VGGNet	Plain 46		26.3M	300×300	69.6		
SSD300S [†]	07+12	×	VGGNet	Dense 37		26.0M	300×300	70.4		
DSOD300	07+12	×	DS/64-192-48-1	Plain	20.6	18.2M	300×300	77.3		
DSOD300	07+12	×	DS/64-192-48-1	Dense	17.4	14.8 M	300×300	77.7		
DSOD300	07+12+COCO	×	DS/64-192-48-1	Dense	17.4	14.8M	300×300	81.7		

Table 4: **PASCAL VOC 2007 test detection results.** SSD300* is updated version by the authors after the paper publication. SSD300S^{\dagger} indicates training SSD300* from scratch with ResNet-101 or VGGNet, which serves as our baseline. Note that the speed of Faster R-CNN with ResNet-101 (2.4 *fps*) is tested on K40, while others are tested on Titan X. The result of SSD300S with ResNet-101 (63.8% mAP, without the pre-trained model) is produced with the default setting of SSD, which may not be optimal.

- Ablation Study on PASCAL VOC2007
- Results on PASCAL VOC2007

Method	data	pre-train	backbone network	prediction layer	speed (fps)	# parameters	input size	mAP		
Faster RCNN [27]	07+12		VGGNet	-	7	134.7M	$\sim 600 \times 1000$	73.2		
Faster RCNN [27]	07+12		ResNet-101		2.4*	134./14	$\sim 600 \times 1000$	76.4		
		v		-		-				
R-FCN [19]	07+12	v	ResNet-50	-	11	31.9M	$\sim 600 imes 1000$	77.4		
R-FCN [19]	07+12	\checkmark	ResNet-101	-	9	50.9M	$\sim 600 imes 1000$	79.5		
R-FCNmulti-sc [19]	07+12	\checkmark	ResNet-101	-	9	50.9M	$\sim 600 imes 1000$	80.5		
YOLOv2 [26]	07+12	\checkmark	Darknet-19	-	81	-	352 imes 352	73.7		
SSD300 [21]	07+12	\checkmark	VGGNet	Plain	46	26.3M	300×300	75.8		
SSD300* [21]	07+12	\checkmark	VGGNet	Plain	46	26.3M	300×300	77.2		
Faster RCNN	07+12	×	VGGNet/ResNet-101/DenseNet		Failed					
R-FCN	07+12	×	VGGNet/ResNet-101/DenseNet			Failed				
SSD300S [†]	07+12	×	ResNet-101	Plain	12.1	52.8M	300×300	63.8*		
SSD300S [†]	07+12	×	VGGNet	Plain	46	26.3M	300 imes 300	69.6		
SSD300S [†]	07+12	×	VGGNet	Dense	37	26.0M	300×300	70.4		
DSOD300	07+12	×	DS/64-192-48-1	Plain	20.6	18.2M	300×300	77.3		
DSOD300	07+12	×	DS/64-192-48-1	Dense	17.4	14.8M	300×300	77.7		
DSOD300	07+12+COCO	×	DS/64-192-48-1	Dense	17.4	14.8M	300×300	81.7		

Table 4: **PASCAL VOC 2007 test detection results.** SSD300* is updated version by the authors after the paper publication. SSD300S^{\dagger} indicates training SSD300* from scratch with ResNet-101 or VGGNet, which serves as our baseline. Note that the speed of Faster R-CNN with ResNet-101 (2.4 *fps*) is tested on K40, while others are tested on Titan X. The result of SSD300S with ResNet-101 (63.8% mAP, without the pre-trained model) is produced with the default setting of SSD, which may not be optimal.

- Ablation Study on PASCAL VOC2007
- Results on PASCAL VOC2007

Results on PASCAL VOC2012

Method	data	backbone network	pre-train	mAP	aero bik	e bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
ION [1]	07+12+S	VGGNet	\checkmark	76.4	87.5 84.	7 76.8	63.8	58.3	82.6	79.0	90.9	57.8	82.0	64.7	88.9	86.5	84.7	82.3	51.4	78.2	69.2	85.2	73.5
Faster RCNN [27]	07++12	ResNet-101	\checkmark	73.8	86.5 81.	5 77.2	58.0	51.0	78.6	76.6	93.2	48.6	80.4	59.0	92.1	85.3	84.8	80.7	48.1	77.3	66.5	84.7	65.6
R-FCNmulti-sc [19]	07++12	ResNet-101	\checkmark	77.6	86.9 83.	4 81.5	63.8	62.4	81.6	81.1	93.1	58.0	83.8	60.8	92.7	86.0	84.6	84.4	59.0	80.8	68.6	86.1	72.9
YOLOv2 [26]	07++12	Darknet-19	\checkmark	73.4	86.3 82.	0 74.8	59.2	51.8	79.8	76.5	90.6	52.1	78.2	58.5	89.3	82.5	83.4	81.3	49.1	77.2	62.4	83.8	68.7
SSD300* [21]	07++12	VGGNet	\checkmark	75.8	88.1 82.	9 74.4	61.9	47.6	82.7	78.8	91.5	58.1	80.0	64.1	89.4	85.7	85.5	82.6	50.2	79.8	73.6	86.6	72.1
DSOD300	07++12	DS/64-192-48-1	X	76.3	89.4 85.	3 72.9	62.7	49.5	83.6	80.6	92.1	60.8	77.9	65.6	88.9	85.5	86.8	84.6	51.1	77.7	72.3	86.0	72.2
DSOD300	07++12+COCO	DS/64-192-48-1	X	79.3	90.5 87.	4 77.5	67.4	57.7	84.7	83.6	92.6	64.8	81.3	66.4	90.1	87.8	88.1	87.3	57.9	80.3	75.6	88.1	76.7

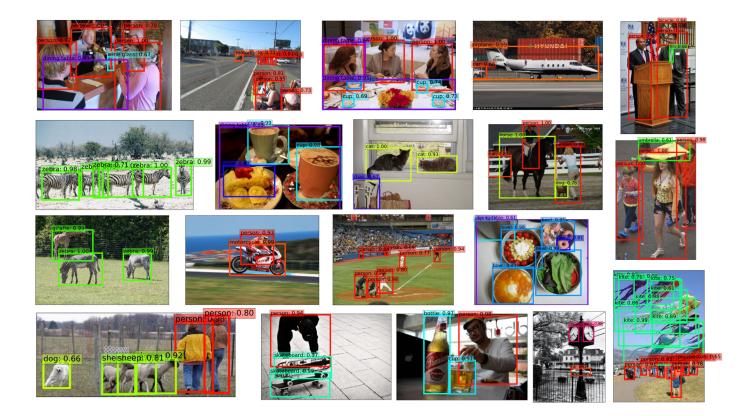
Table 5: PASCAL VOC 2012 test detection results. 07+12: 07 trainval + 12 trainval, 07+12+S: 07+12 plus segmentation labels, 07++12: 07 trainval + 07 test + 12 trainval. Result links are DSOD300 (07+12): http://host.robots.ox.ac.uk:8080/anonymous/PIOBKI. html; DSOD300 (07+12+COCO): http://host.robots.ox.ac.uk:8080/anonymous/IOUUH0.html.

- Ablation Study on PASCAL VOC2007
- Results on PASCAL VOC2007
- Results on PASCAL VOC2012

Results on MS COCO

Method	data	network	pre-train	Avg. P	Avg.	Precision	Area:	Avg.	Recall, #	Dets:	Avg. Recall, Area:				
Method	uata	network	pre-train	0.5:0.95	0.5	0.75	S	Μ	L	1	10	100	S	Μ	L
Faster RCNN [27]	trainval	VGGNet	\checkmark	21.9	42.7	-	-	-	-	-	-	-	-	-	-
ION [1]	train	VGGNet	 ✓ 	23.6	43.2	23.6	6.4	24.1	38.3	23.2	32.7	33.5	10.1	37.7	53.6
R-FCN [19]	trainval	ResNet-101	 ✓ 	29.2	51.5	-	10.3	32.4	43.3	-	-	-	-	-	-
R-FCNmulti-sc [19]	trainval	ResNet-101	 ✓ 	29.9	51.9	-	10.8	32.8	45.0	-	-	-	-	-	-
SSD300 (Huang et al.) [11]	< trainval35k	MobileNet	\checkmark	18.8	-	-	-	-	-	-	-	-	-	-	-
SSD300 (Huang et al.) [11]	< trainval35k	Inception-v2	 ✓ 	21.6	-	-	-	-	-	-	-	-	-	-	-
YOLOv2 [26]	trainval35k	Darknet-19	 ✓ 	21.6	44.0	19.2	5.0	22.4	35.5	20.7	31.6	33.3	9.8	36.5	54.4
SSD300* [21]	trainval35k	VGGNet	 ✓ 	25.1	43.1	25.8	6.6	25.9	41.4	23.7	35.1	37.2	11.2	40.4	58.4
DSOD300	trainval	DS/64-192-48-1	X	29.3	47.3	30.6	9. 4	31.5	47.0	27.3	40.7	43.0	16.7	47.1	65.0

Table 6: MS COCO test-dev 2015 detection results.


- Ablation Study on PASCAL VOC2007
- Results on PASCAL VOC2007
- Results on PASCAL VOC2012

Results on MS COCO

Method	data	network	pro train	pre-train Avg. Precision, IoU:					Area:	Avg.	Recall, #	Dets:	Avg. Recall, Area:		
Method	uata	network	pre-train	0.5:0.95	0.5	0.75	S	Μ	L	1	10	100	S	Μ	L
Faster RCNN [27]	trainval	VGGNet	\checkmark	21.9	42.7	-	-	-	-	-	-	-	-	-	-
ION [1]	train	VGGNet	\checkmark	23.6	43.2	23.6	6.4	24.1	38.3	23.2	32.7	33.5	10.1	37.7	53.6
R-FCN [19]	trainval	ResNet-101	 ✓ 	29.2	51.5	-	10.3	32.4	43.3	-	-	-	-	-	-
R-FCNmulti-sc [19]	trainval	ResNet-101	\checkmark	29.9	51.9	-	10.8	32.8	45.0	-	-	-	-	-	-
SSD300 (Huang et al.) [11]	< trainval35k	MobileNet	\checkmark	18.8	-	-	-	-	-	-	-	-	-	-	-
SSD300 (Huang et al.) [11]	< trainval35k	Inception-v2	\checkmark	21.6	-	-	-	-	-	-	-	-	-	-	-
YOLOv2 [26]	trainval35k	Darknet-19	\checkmark	21.6	44.0	19.2	5.0	22.4	35.5	20.7	31.6	33.3	9.8	36.5	54.4
SSD300* [21]	trainval35k	VGGNet	\checkmark	25.1	43.1	25.8	6.6	25.9	41.4	23.7	35.1	37.2	11.2	40.4	58.4
DSOD300	trainval	DS/64-192-48-1	×	29.3	47.3	30.6	9. 4	31.5	47.0	27.3	40.7	43.0	16.7	47.1	65.0

Table 6: MS COCO test-dev 2015 detection results.

Examples of Detection Results

Paper: https://arxiv.org/abs/1708.01241

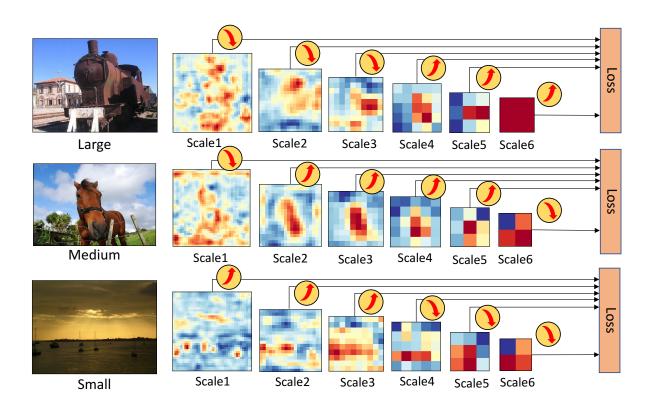
Code & Models: https://github.com/szq0214/DSOD

≻Network Structure:

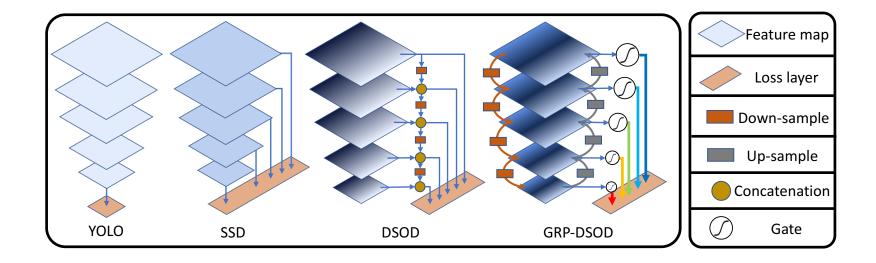
http://ethereon.github.io/netscope/#/gist/b17d01f3131e2a6of90

57b5d3eb9e04d

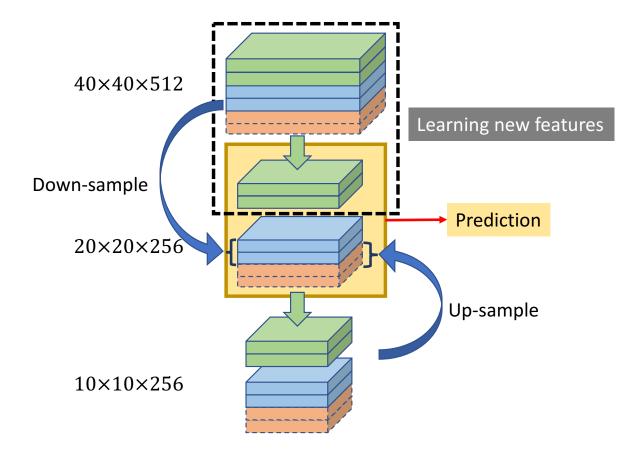
Summary of DSOD


- Learning object detectors from scratch is necessary.
- Limitations with pre-trained models.
- Principles.
- The first framework that can train object detection networks from scratch with state-of-the-art performance.

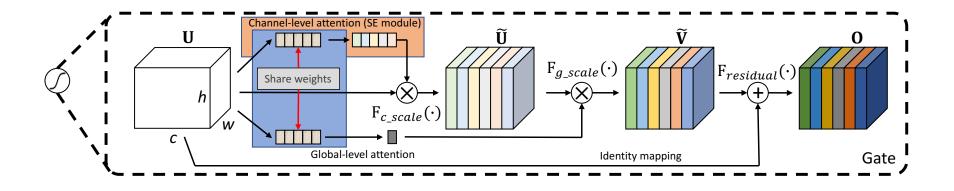
Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids


Zhiqiang Shen*, Honghui Shi*, Rogerio Feris, Liangliang Cao, Shuicheng Yan, Ding Liu, Xinchao Wang, Xiangyang Xue, and Thomas S. Huang. "Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids." *arXiv preprint arXiv:1712.00886* (2017).

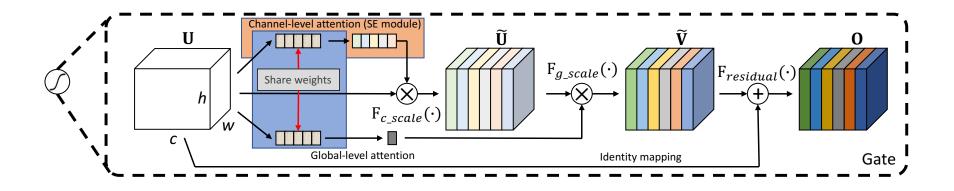
Our Main Motivation



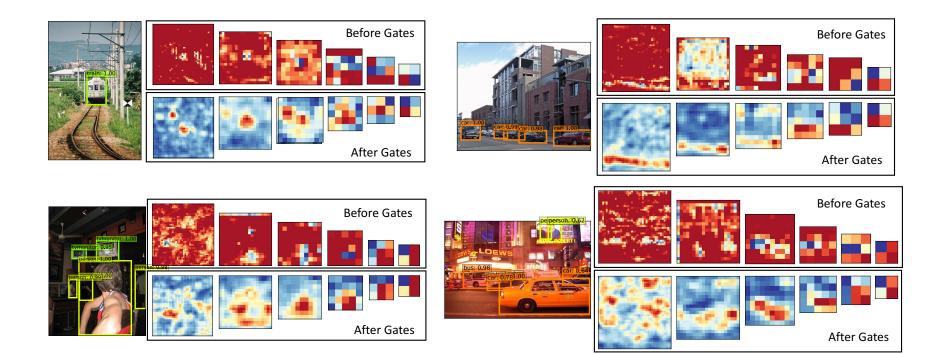
YOLO, SSD, DSOD and GRP-DSOD



Recurrent Feature Pyramids

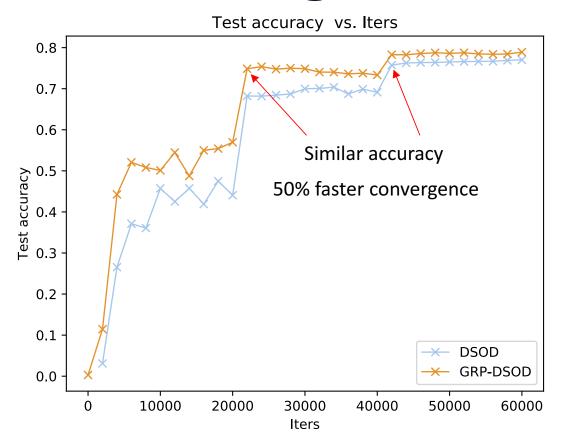


Gate Structure


Gate Structure

$$\mathbf{O} = \mathbf{F}_{gate}(\mathbf{U}) = \mathbf{F}_r(\mathbf{F}_g(\mathbf{F}_c(\mathbf{U})))$$

Identity Mapping Channel-level
Global-level



Visualization of Feature Maps

High Accuracy & Faster Convergence

Ablation Study on VOC 2007

Method	mAP
DSOD300 [24]	77.7
GRP-DSOD300	78.5
GRP-DSOD320	78.7
GRP-DSOD320*	79.0
DSOD320* (using RFP only	78.6
DSOD320* (using gates only	y) 78.5

Table 1: Ablation Experiments on PASCAL VOC 2007. "RFP" denotes our recurrent feature pyramid. * denotes we add one more aspect ratio 1.6 for default boxes at every prediction layer.

Method	data	pre-train	backbone network	prediction layer	speed (fps)	# parameters	input size	mAP
Faster RCNN [22]	07+12	\checkmark	VGGNet	-	7	134.7M	$\sim 600 \times 1000$	73.2
Faster RCNN [22]	07+12	 ✓ 	ResNet-101	-	2.4*	-	$\sim 600 \times 1000$	76.4
R-FCN [3]	07+12	\checkmark	ResNet-50	-	11	31.9M	$\sim 600 \times 1000$	77.4
R-FCN [3]	07+12	\checkmark	ResNet-101	-	9	50.9M	$\sim 600 \times 1000$	79.5
R-FCNmulti-sc [3]	07+12	\checkmark	ResNet-101	-	9	50.9M	$\sim 600 \times 1000$	80.5
YOLOv2 [21]	07+12	\checkmark	Darknet-19	-	81	-	352 imes 352	73.7
SSD300 [19]	07+12	\checkmark	VGGNet	Plain	46	26.3M	300 imes 300	75.8
SSD300* [19]	07+12	\checkmark	VGGNet	Plain	46	26.3M	300 imes 300	77.2
SSD300S [†] [24]	07+12	×	ResNet-101	Plain	12.1	52.8M	300×300	63.8*
SSD300S [†] [24]	07+12	×	VGGNet	Plain	46	26.3M	300 imes 300	69.6
SSD300S [†] [24]	07+12	×	VGGNet	Dense	37	26.0M	300 imes 300	70.4
DSOD300 [24]	07+12	×	DS/64-192-48-1	Plain	20.6	18.2M	300×300	77.3
DSOD300 [24]	07+12	×	DS/64-192-48-1	Dense	17.4	14.8M	300 imes 300	77.7
GRP-DSOD300	07+12	×	DS/64-192-48-1	Recurrent	17.5	14.1M	300 imes 300	78.5
SSD321 [19, 6]	07+12	\checkmark	ResNet-101	Plain	11.2	52.8M	321×321	77.1
DSSD321 [6]	07+12	\checkmark	ResNet-101	Plain	9.5	> 52.8M	321 imes 321	78.6
GRP-DSOD320	07+12	×	DS/64-192-48-1	Recurrent	16.7	14.2M	320 imes 320	78.7
GRP-DSOD320*	07+12	×	DS/64-192-48-1	Recurrent	16.3	-	320 imes 320	79.0

Table 2: **PASCAL VOC 2007 test detection results.** SSD300S[†] indicates training SSD300* from scratch with ResNet-101 or VGGNet. Note that the speed of Faster R-CNN with ResNet-101 (2.4 *fps*) is tested on K40, while others are tested on Titan X. For GRP-DSOD320*, we did not include the # parameters of extra default boxes and the # parameters are 14.2M. If include, the # parameters are 16M. Table adapted from [24].

Method	data	pre-train	backbone network	prediction layer	speed (fps)	# parameters	input size	mAP
Faster RCNN [22]	07+12	\checkmark	VGGNet	-	7	134.7M	$\sim 600 \times 1000$	73.2
Faster RCNN [22]	07+12	\checkmark	ResNet-101	-	2.4*	-	$\sim 600 \times 1000$	76.4
R-FCN [3]	07+12	 ✓ 	ResNet-50	-	11	31.9M	$\sim 600 \times 1000$	77.4
R-FCN [3]	07+12	\checkmark	ResNet-101	-	9	50.9M	$\sim 600 \times 1000$	79.5
R-FCNmulti-sc [3]	07+12	\checkmark	ResNet-101	-	9	50.9M	$\sim 600 \times 1000$	80.5
YOLOv2 [21]	07+12	\checkmark	Darknet-19	-	81	-	352×352	73.7
SSD300 [19]	07+12	\checkmark	VGGNet	Plain	46	26.3M	300 imes 300	75.8
SSD300* [19]	07+12	\checkmark	VGGNet	Plain	46	26.3M	300 imes 300	77.2
SSD300S [†] [24]	07+12	×	ResNet-101	Plain	12.1	52.8M	300×300	63.8*
SSD300S [†] [24]	07+12	×	VGGNet	Plain	46	26.3M	300 imes 300	69.6
SSD300S [†] [24]	07+12	×	VGGNet	Dense	37	26.0M	300×300	70.4
DSOD300 [24]	07+12	×	DS/64-192-48-1	Plain	20.6	18.2M	300×300	77.3
DSOD300 [24]	07+12	×	DS/64-192-48-1	Dense	17.4	14.8M	300 imes 300	77.7
GRP-DSOD300	07+12	×	DS/64-192-48-1	Recurrent	17.5	14.1M	300×300	78.5
SSD321 [19, 6]	07+12	\checkmark	ResNet-101	Plain	11.2	52.8M	321×321	77.1
DSSD321 [6]	07+12	 ✓ 	ResNet-101	Plain	9.5	> 52.8M	321 imes 321	78.6
GRP-DSOD320	07+12	×	DS/64-192-48-1	Recurrent	16.7	14.2M	320 imes 320	78.7
GRP-DSOD320*	07+12	×	DS/64-192-48-1	Recurrent	16.3	-	320 imes 320	79.0

Table 2: **PASCAL VOC 2007 test detection results.** SSD300s[†] indicates training SSD300* from scratch with ResNet-101 or VGGNet. Note that the speed of Faster R-CNN with ResNet-101 (2.4 *fps*) is tested on K40, while others are tested on Titan X. For GRP-DSOD320*, we did not include the # parameters of extra default boxes and the # parameters are 14.2M. If include, the # parameters are 16M. Table adapted from [24].

Method	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
GRP-DSOD320* [†]	77.0	89.6	85.4	74.2	61.7	51.2	83.6	81.4	91.7	61.9	80.0	65.8	89.1	86.0	87.8	85.0	53.8	79.0	71.3	87.9	73.1
GRP-DSOD320*	1		1													82.2					
SSD [19]	64.0	78.9	72.3	61.8	42.8	27.9	73.1	69.4	84.9	42.5	68.4	52.2	80.9	76.5	77.2	68.2	31.6	67.0	66.6	77.3	60.9
THU_ML_class	62.4	78.0	71.0	64.5	47.4	45.3	70.1	70.6	82.0	37.9	65.4	44.2	77.4	69.6	74.4	75.5	37.9	62.0	45.5	73.8	56.3
YOLOv2 [21]	48.8	69.5	61.6	37.6	28.2	18.8	63.2	53.2	65.6	27.5	44.4	35.9	61.4	57.9	66.9	63.8	16.8	52.8	39.5	65.4	46.2
DENSE_BOX	45.9	64.7	64.1	28.8	26.7	30.7	60.6	54.9	47.4	29.3	41.8	34.6	42.6	59.3	64.2	62.5	24.3	53.7	27.1	50.9	50.7
NoC	42.2	62.8	60.4	26.7	22.3	25.7	56.9	55.2	52.1	21.5	38.3	34.2	43.9	51.2	58.8	40.7	20.4	42.0	37.4	52.6	41.6

Table 3: PASCAL VOC 2012 Competition comp3 Leaderboard. GRP-DSOD320*[†] is trained on VOC 07++12 set and GRP-DSOD320* is trained on VOC 12 trainval set. Note that both of the two results use single model for prediction without any experimental tricks. Result links are GRP-DSOD320*[†] (07++12): http://host.robots.ox.ac.uk:8080/anonymous/CSMRU4.html; GRP-DSOD320* (12): http://host.robots.ox.ac.uk:8080/anonymous/KJSBBP.html.

Method	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
GRP-DSOD320* [†]	77.0	89.6	85.4	74.2	61.7	51.2	83.6	81.4	91.7	61.9	80.0	65.8	89.1	86.0	87.8	85.0	53.8	79.0	71.3	87.9	73.1
GRP-DSOD320*	72.5	87.1	81.9	68.6	58.3	47.0	81.5	77.3	87.7	54.9	75.5	60.7	84.5	81.3	85.1	82.2	45.1	75.4	66.6	82.5	67.0
SSD [19]	64.0	78.9	72.3	61.8	42.8	27.9	73.1	69.4	84.9	42.5	68.4	52.2	80.9	76.5	77.2	68.2	31.6	67.0	66.6	77.3	60.9
THU_ML_class	62.4	78.0	71.0	64.5	47.4	45.3	70.1	70.6	82.0	37.9	65.4	44.2	77.4	69.6	74.4	75.5	37.9	62.0	45.5	73.8	56.3
YOLOv2 [21]	48.8	69.5	61.6	37.6	28.2	18.8	63.2	53.2	65.6	27.5	44.4	35.9	61.4	57.9	66.9	63.8	16.8	52.8	39.5	65.4	46.2
DENSE_BOX	45.9	64.7	64.1	28.8	26.7	30.7	60.6	54.9	47.4	29.3	41.8	34.6	42.6	59.3	64.2	62.5	24.3	53.7	27.1	50.9	50.7
NoC	42.2	62.8	60.4	26.7	22.3	25.7	56.9	55.2	52.1	21.5	38.3	34.2	43.9	51.2	58.8	40.7	20.4	42.0	37.4	52.6	41.6

Table 3: PASCAL VOC 2012 Competition comp3 Leaderboard. GRP-DSOD320*[†] is trained on VOC 07++12 set and GRP-DSOD320* is trained on VOC 12 trainval set. Note that both of the two results use single model for prediction without any experimental tricks. Result links are GRP-DSOD320*[†] (07++12): http://host.robots.ox.ac.uk:8080/anonymous/CSMRU4.html; GRP-DSOD320* (12): http://host.robots.ox.ac.uk:8080/anonymous/KJSBBP.html.

													-			person	-	-			
GRP-DSOD320* [†]	77.0	89.6	85.4	74.2	61.7	51.2	83.6	81.4	91.7	61.9	80.0	65.8	89.1	86.0	87.8	85.0	53.8	79.0	71.3	87.9	73.1
GRP-DSOD320*	72.5	87.1	81.9	68.6	58.3	47.0	81.5	77.3	87.7	54.9	75.5	60.7	84.5	81.3	85.1	82.2	45.1	75.4	66.6	82.5	67.0
SSD [19]	64.0	78.9	72.3	61.8	42.8	27.9	73.1	69.4	84.9	42.5	68.4	52.2	80.9	76.5	77.2	68.2	31.6	67.0	66.6	77.3	60.9
THU_ML_class	62.4	78.0	71.0	64.5	47.4	45.3	70.1	70.6	82.0	37.9	65.4	44.2	77.4	69.6	74.4	75.5	37.9	62.0	45.5	73.8	56.3
YOLOv2 [21]	48.8	69.5	61.6	37.6	28.2	18.8	63.2	53.2	65.6	27.5	44.4	35.9	61.4	57.9	66.9	63.8	16.8	52.8	39.5	65.4	46.2
DENSE_BOX	45.9	64.7	64.1	28.8	26.7	30.7	60.6	54.9	47.4	29.3	41.8	34.6	42.6	59.3	64.2	62.5	24.3	53.7	27.1	50.9	50.7
NoC	42.2	62.8	60.4	26.7	22.3	25.7	56.9	55.2	52.1	21.5	38.3	34.2	43.9	51.2	58.8	40.7	20.4	42.0	37.4	52.6	41.6

Table 3: PASCAL VOC 2012 Competition comp3 Leaderboard. GRP-DSOD320*[†] is trained on VOC 07++12 set and GRP-DSOD320* is trained on VOC 12 trainval set. Note that both of the two results use single model for prediction without any experimental tricks. Result links are GRP-DSOD320*[†] (07++12): http://host.robots.ox.ac.uk:8080/anonymous/CSMRU4.html; GRP-DSOD320* (12): http://host.robots.ox.ac.uk:8080/anonymous/KJSBBP.html.

Method	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
GRP-DSOD320* [†]	77.0	89.6	85.4	74.2	61.7	51.2	83.6	81.4	91.7	61.9	80.0	65.8	89.1	86.0	87.8	85.0	53.8	79.0	71.3	87.9	73.1
GRP-DSOD320*	72.5	87.1	81.9	68.6	58.3	47.0	81.5	77.3	87.7	54.9	75.5	60.7	84.5	81.3	85.1	82.2	45.1	75.4	66.6	82.5	67.0
SSD [19]	64.0	78.9	72.3	61.8	42.8	27.9	73.1	69.4	84.9	42.5	68.4	52.2	80.9	76.5	77.2	68.2	31.6	67.0	66.6	77.3	60.9
THU_ML_class	62.4	78.0	71.0	64.5	47.4	45.3	70.1	70.6	82.0	37.9	65.4	44.2	77.4	69.6	74.4	75.5	37.9	62.0	45.5	73.8	56.3
YOLOv2 [21]	48.8	69.5	61.6	37.6	28.2	18.8	63.2	53.2	65.6	27.5	44.4	35.9	61.4	57.9	66.9	63.8	16.8	52.8	39.5	65.4	46.2
DENSE_BOX	45.9	64.7	64.1	28.8	26.7	30.7	60.6	54.9	47.4	29.3	41.8	34.6	42.6	59.3	64.2	62.5	24.3	53.7	27.1	50.9	50.7
NoC	42.2	62.8	60.4	26.7	22.3	25.7	56.9	55.2	52.1	21.5	38.3	34.2	43.9	51.2	58.8	40.7	20.4	42.0	37.4	52.6	41.6

Method	data	backbone network	pre-train	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa tra	in tv
ION [1]	07+12+S	VGGNet	\checkmark	76.4	87.5	84.7	76.8	63.8	58.3	82.6	79.0	90.9	57.8	82.0	64.7	88.9	86.5	84.7	82.3	51.4	78.2	69.2 85	.2 73.5
Faster RCNN [22]	07++12	ResNet-101	\checkmark	73.8	86.5	81.6	77.2	58.0	51.0	78.6	76.6	93.2	48.6	80.4	59.0	92.1	85.3	84.8	80.7	48. 1	77.3	66.5 84	.7 65.6
R-FCNmulti-sc [3]	07++12	ResNet-101	\checkmark	77.6	86.9	83.4	81.5	63.8	62.4	81.6	81.1	93.1	58.0	83.8	60.8	92.7	86.0	84.6	84.4	59.0	80.8	68.6 86	.1 72.9
YOLOv2 [21]	07++12	Darknet-19	\checkmark	73.4	86.3	82.0	74.8	59.2	51.8	79.8	76.5	90.6	52.1	78.2	58.5	89.3	82.5	83.4	81.3	49.1	77.2	62.4 83	.8 68.7
SSD300* [19]	07++12	VGGNet	\checkmark	75.8	88.1	82.9	74.4	61.9	47.6	82.7	78.8	91.5	58.1	80.0	64.1	89.4	85.7	85.5	82.6	50.2	79.8	73.6 86	.6 72.1
DSOD300 [24]	07++12	DS/64-192-48-1	X	76.3	89.4	85.3	72.9	62.7	49.5	83.6	80.6	92.1	60.8	77.9	65.6	88.9	85.5	86.8	84.6	51.1	77.7	72.3 86	.0 72.2
SSD321 [19, 6]	07++12	ResNet-101	\checkmark	75.4	87.9	82.9	73.7	61.5	45.3	81.4	75.6	92.6	57.4	78.3	65.0	90.8	86.8	85.8	81.5	50.3	78.1	75.3 85	.2 72.5
DSSD321 [6]	07++12	ResNet-101	\checkmark	76.3	87.3	83.3	75.4	64.6	46.8	82.7	76.5	92.9	59.5	78.3	64.3	91.5	86.6	86.6	82.1	53.3	79.6	75.7 85	.2 73.9
GRP-DSOD320*	07++12	DS/64-192-48-1	×	77.0	89.6	85.4	74.2	61.7	51.2	83.6	81.4	91.7	61.9	80.0	65.8	89.1	86.0	87.8	85.0	53.8	79.0	71.3 87	.9 73.1

Table 4: PASCAL VOC 2012 test detection results. 07+12: 07 trainval + 12 trainval, 07+12+S: 07+12 plus segmentation labels, 07++12: 07 trainval + 07 test + 12 trainval. The result link for DSOD320* (07++12) is: http://host.robots.ox.ac.uk:8080/anonymous/CSMRU4.html.

Method	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
GRP-DSOD320* [†]	77.0	89.6	85.4	74.2	61.7	51.2	83.6	81.4	91.7	61.9	80.0	65.8	89.1	86.0	87.8	85.0	53.8	79.0	71.3	87.9	73.1
GRP-DSOD320*	72.5	87.1	81.9	68.6	58.3	47.0	81.5	77.3	87.7	54.9	75.5	60.7	84.5	81.3	85.1	82.2	45.1	75.4	66.6	82.5	67.0
SSD [19]	64.0	78.9	72.3	61.8	42.8	27.9	73.1	69.4	84.9	42.5	68.4	52.2	80.9	76.5	77.2	68.2	31.6	67.0	66.6	77.3	60.9
THU_ML_class	62.4	78.0	71.0	64.5	47.4	45.3	70.1	70.6	82.0	37.9	65.4	44.2	77.4	69.6	74.4	75.5	37.9	62.0	45.5	73.8	56.3
YOLOv2 [21]	48.8	69.5	61.6	37.6	28.2	18.8	63.2	53.2	65.6	27.5	44.4	35.9	61.4	57.9	66.9	63.8	16.8	52.8	39.5	65.4	46.2
DENSE_BOX	45.9	64.7	64.1	28.8	26.7	30.7	60.6	54.9	47.4	29.3	41.8	34.6	42.6	59.3	64.2	62.5	24.3	53.7	27.1	50.9	50.7
NoC	42.2	62.8	60.4	26.7	22.3	25.7	56.9	55.2	52.1	21.5	38.3	34.2	43.9	51.2	58.8	40.7	20.4	42.0	37.4	52.6	41.6

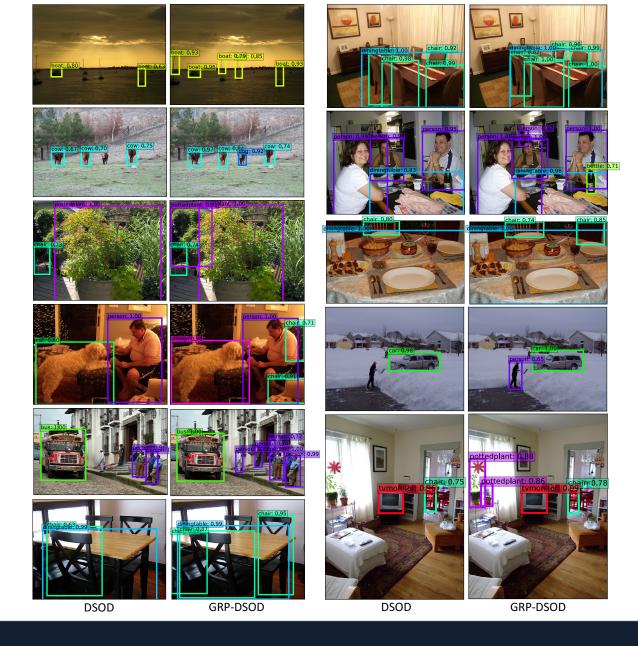
Method	data	backbone network	pre-train	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa trai	n tv
ION [1]	07+12+S	VGGNet	\checkmark	76.4	87.5	84.7	76.8	63.8	58.3	82.6	79.0	90.9	57.8	82.0	64.7	88.9	86.5	84.7	82.3	51.4	78.2	69.2 85.2	2 73.5
Faster RCNN [22]	07++12	ResNet-101	\checkmark	73.8	86.5	81.6	77.2	58.0	51.0	78.6	76.6	93.2	48.6	80.4	59.0	92.1	85.3	84.8	80.7	48.1	77.3	66.5 84.	7 65.6
R-FCNmulti-sc [3]	07++12	ResNet-101	\checkmark	77.6	86.9	83.4	81.5	63.8	62.4	81.6	81.1	93.1	58.0	83.8	60.8	92.7	86.0	84.6	84.4	59.0	80.8	68.6 86.	1 72.9
YOLOv2 [21]	07++12	Darknet-19	\checkmark	73.4	86.3	82.0	74.8	59.2	51.8	79.8	76.5	90.6	52.1	78.2	58.5	89.3	82.5	83.4	81.3	49.1	77.2	62.4 83.	8 68.7
SSD300* [19]	07++12	VGGNet	\checkmark	75.8	88.1	82.9	74.4	61.9	47.6	82.7	78.8	91.5	58.1	80.0	64.1	89.4	85.7	85.5	82.6	50.2	79.8	73.6 86.	5 72.1
DSOD300 [24]	07++12	DS/64-192-48-1	X	76.3	89.4	85.3	72.9	62.7	49.5	83.6	80.6	92.1	60.8	77.9	65.6	88.9	85.5	86.8	84.6	51.1	77.7	72.3 86.0) 72.2
SSD321 [19, 6]	07++12	ResNet-101	\checkmark	75.4	87.9	82.9	73.7	61.5	45.3	81.4	75.6	92.6	57.4	78.3	65.0	90.8	86.8	85.8	81.5	50.3	78.1	75.3 85.2	2 72.5
DSSD321 [6]	07++12	ResNet-101	\checkmark	76.3	87.3	83.3	75.4	64.6	46.8	82.7	76.5	92.9	59.5	78.3	64.3	91.5	86.6	86.6	82.1	53.3	79.6	75.7 85.2	2 73.9
GRP-DSOD320*	07++12	DS/64-192-48-1	X	77.0	89.6	85.4	74.2	61.7	51.2	83.6	81.4	91.7	61.9	80.0	65.8	89. 1	86.0	87.8	85.0	53.8	79.0	71.3 87.9) 73.1

Table 4: PASCAL VOC 2012 test detection results. 07+12: 07 trainval + 12 trainval, 07+12+S: 07+12 plus segmentation labels, 07++12: 07 trainval + 07 test + 12 trainval. The result link for DSOD320* (07++12) is: http://host.robots.ox.ac.uk:8080/anonymous/CSMRU4.html.

Results on MS COCO

Method	data	backbone network	nno taoin	Avg. Pr	recision, I	oU:	Avg.	Precision,	Area:	Avg.	Recall, #	Dets:	Avg.	Recall, A	Area:
Method	uata	backbone network	pre-train	0.5:0.95	0.5	0.75	S	Μ	L	1	10	100	S	Μ	L
Faster RCNN [22]	trainval	VGGNet	\checkmark	21.9	42.7	-	-	-	-	-	-	-	-	-	-
ION [1]	train	VGGNet	\checkmark	23.6	43.2	23.6	6.4	24.1	38.3	23.2	32.7	33.5	10.1	37.7	53.6
R-FCN [3]	trainval	ResNet-101	 ✓ 	29.2	51.5	-	10.3	32.4	43.3	-	-	-	-	-	-
R-FCNmulti-sc [3]	trainval	ResNet-101	 ✓ 	29.9	51.9	-	10.8	32.8	45.0	-	-	-	-	-	-
SSD300 (Huang et al.) [14]	< trainval35k	MobileNet	 ✓ 	18.8	-	-	-	-	-	-	-	-	-	-	-
SSD300 (Huang et al.) [14]	< trainval35k	Inception-v2	\checkmark	21.6	-	-	-	-	-	-	-	-	-	-	-
YOLOv2 [21]	trainval35k	Darknet-19	\checkmark	21.6	44.0	19.2	5.0	22.4	35.5	20.7	31.6	33.3	9.8	36.5	54.4
SSD300* [19]	trainval35k	VGGNet	\checkmark	25.1	43.1	25.8	6.6	25.9	41.4	23.7	35.1	37.2	11.2	40.4	58.4
DSOD300 [24]	trainval	DS/64-192-48-1	×	29.3	47.3	30.6	9.4	31.5	47.0	27.3	40.7	43.0	16.7	47.1	65.0
SSD321 [19, 6]	trainval35k	ResNet-101	\checkmark	28.0	45.4	29.3	6.2	28.3	49.3	25.9	37.8	39.9	11.5	43.3	64.9
DSSD321 [6]	trainval35k	ResNet-101	\checkmark	28.0	46.1	29.2	7.4	28.1	47.6	25.5	37.1	39.4	12.7	42.0	62.6
GRP-DSOD320	trainval	DS/64-192-48-1	×	30.0	47.9	31.8	10.9	33.6	46.3	28.0	42.1	44.5	18.8	49.1	65.0

Table 5: MS COCO test-dev 2015 detection results.



Results on MS COCO

Method	data	backbone network	pre-train	Avg. P	recision, I	oU:	Avg.	Precision,	Area:	Avg.	Recall, #	Dets:	Avg.	Recall, A	Area:
Method	uata	backbone network	pre-train	0.5:0.95	0.5	0.75	S	Μ	L	1	10	100	S	Μ	L
Faster RCNN [22]	trainval	VGGNet	\checkmark	21.9	42.7	-	-	-	-	-	-	-	-	-	-
ION [1]	train	VGGNet	\checkmark	23.6	43.2	23.6	6.4	24.1	38.3	23.2	32.7	33.5	10.1	37.7	53.6
R-FCN [3]	trainval	ResNet-101	 ✓ 	29.2	51.5	-	10.3	32.4	43.3	-	-	-	-	-	-
R-FCNmulti-sc [3]	trainval	ResNet-101	 ✓ 	29.9	51.9	-	10.8	32.8	45.0	-	-	-	-	-	-
SSD300 (Huang et al.) [14]	< trainval35k	MobileNet	 ✓ 	18.8	-	-	-	-	-	-	-	-	-	-	-
SSD300 (Huang et al.) [14]	< trainval35k	Inception-v2	\checkmark	21.6	-	-	-	-	-	-	-	-	-	-	-
YOLOv2 [21]	trainval35k	Darknet-19	 ✓ 	21.6	44.0	19.2	5.0	22.4	35.5	20.7	31.6	33.3	9.8	36.5	54.4
SSD300* [19]	trainval35k	VGGNet	\checkmark	25.1	43.1	25.8	6.6	25.9	41.4	23.7	35.1	37.2	11.2	40.4	58.4
DSOD300 [24]	trainval	DS/64-192-48-1	×	29.3	47.3	30.6	9.4	31.5	47.0	27.3	40.7	43.0	16.7	47.1	65.0
SSD321 [19, 6]	trainval35k	ResNet-101	\checkmark	28.0	45.4	29.3	6.2	28.3	49.3	25.9	37.8	39.9	11.5	43.3	64.9
DSSD321 [6]	trainval35k	ResNet-101	\checkmark	28.0	46.1	29.2	7.4	28.1	47.6	25.5	37.1	39.4	12.7	42.0	62.6
GRP-DSOD320	trainval	DS/64-192-48-1	×	30.0	47.9	31.8	10.9	33.6	46.3	28.0	42.1	44.5	18.8	49.1	65.0

Table 5: MS COCO test-dev 2015 detection results.

Summary of GRP-DSOD

- Best performance on PASCAL VOC comp3 challenge.
- Recurrent feature pyramids for enhancing the feature representation.
- Recalibrating feature activations with gating mechanism.
- *Gated Recurrent Feature Pyramid* is an independent module that can be applied to DSOD, FPN, etc.

Thanks & Questions

