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Object Detection vs. Other 
Computer Vision Problems
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Object Detection
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Typical Detection Methods

R-CNN Faster-RCNN

YOLO SSD
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Limitations 
Ø ImageNet pre-trained models

• Limited structure design space.

• Learning bias. 

• Domain mismatch. 



Training from Scratch

Limitations 

• Limited structure design space.

• Learning bias. 

• Domain mismatch. 

Ø ImageNet pre-trained models



Key Findings (training from
scratch)

• Faster RCNN & R-FCN: < 15% mAP on
VOC without the pre-trained models.

• SSD: 69.6% mAP on VOC.



Review: Region of Interest (RoI) 
pooling

RoI pooling 
layer

Conv feature map

Region of Interest (RoI)
Figure from Ross Girshick

Ross Girshick. “Fast R-CNN”. ICCV 2015.



Review: Region of Interest (RoI) 
pooling

Ross Girshick. “Fast R-CNN”. ICCV 2015.

Ø RoI pooling is just like max pooling

RoI pooling

RoI pooling

!∗ 0,2 = 23

!∗ 1,0 = 23

)*

)+

,-.

/*,-

/+,*

)*

)+

Figure from Ross Girshick



Review: Region of Interest (RoI) 
pooling

Ross Girshick. “Fast R-CNN”. ICCV 2015.

Ø RoI pooling is just like max pooling
Ø Forward / backward

Figure from Ross Girshick

Log loss + smooth L1 loss

ConvNet
(applied to entire 

image)

Linear +
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One-stage pipeline
Ø Proposal-free. 
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Principles
Ø Proposal-free.
Ø Deep Supervision.
Ø Dense Prediction Structure. 
Ø Stem Block. 



DSOD architecture 
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Examples of Detection Results



ØPaper: https://arxiv.org/abs/1708.01241

ØCode & Models: https://github.com/szq0214/DSOD

ØNetwork Structure:

http://ethereon.github.io/netscope/#/gist/b17d01f3131e2a60f90

57b5d3eb9e04d



Summary of DSOD
• Learning object detectors from scratch is necessary.
• Limitations with pre-trained models.
• Principles.
• The first framework that can train object detection 

networks from scratch with state-of-the-art 
performance.



Learning Object Detectors from 

Scratch with Gated Recurrent 

Feature Pyramids

Zhiqiang Shen*, Honghui Shi*, Rogerio Feris, Liangliang Cao, Shuicheng

Yan, Ding Liu, Xinchao Wang, Xiangyang Xue, and Thomas S. Huang. 

"Learning Object Detectors from Scratch with Gated Recurrent Feature 

Pyramids." arXiv preprint arXiv:1712.00886 (2017).



Our Main Motivation

Large

Medium

Small

Scale1 Scale2 Scale3 Scale4

Loss

Scale5 Scale6

Loss
Loss

Scale1 Scale2 Scale3 Scale4 Scale5 Scale6

Scale1 Scale2 Scale3 Scale4 Scale5 Scale6



YOLO, SSD, DSOD and GRP-
DSOD

YOLO SSD DSOD GRP-DSOD
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Recurrent Feature Pyramids

Down-sample

Up-sample

Learning new features

Prediction
20×20×256

10×10×256

40×40×512



Gate Structure
YOLO SSD DSOD GRP-DSOD
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Gate Structure
YOLO SSD DSOD GRP-DSOD
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Visualization of Feature Maps 

Before Gates

After Gates
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High Accuracy & Faster
Convergence

Similar accuracy
50% faster convergence



Ablation Study on VOC 2007



Results on VOC 2007



Results on VOC 2007



Results on VOC 2012



Results on VOC 2012
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Results on VOC 2012



Results on VOC 2012



Results on MS COCO



Results on MS COCO



DSOD GRP-DSOD DSOD GRP-DSOD



Summary of GRP-DSOD
• Best performance on PASCAL VOC comp3 challenge.
• Recurrent feature pyramids for enhancing the feature

representation.
• Recalibrating feature activations with gating 

mechanism.
• Gated Recurrent Feature Pyramid is an independent

module that can be applied to DSOD, FPN, etc.



Thanks & Questions


