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Abstract

We present a new dataset condensation framework termed Squeeze ( ), Recover
( ) and Relabel ( ) (SRe2L) that decouples the bilevel optimization of model
and synthetic data during training, to handle varying scales of datasets, model
architectures and image resolutions for efficient dataset condensation. The proposed
method demonstrates flexibility across diverse dataset scales and exhibits multiple
advantages in terms of arbitrary resolutions of synthesized images, low training cost
and memory consumption with high-resolution synthesis, and the ability to scale up
to arbitrary evaluation network architectures. Extensive experiments are conducted
on Tiny-ImageNet and full ImageNet-1K datasets1. Under 50 IPC, our approach
achieves the highest 42.5% and 60.8% validation accuracy on Tiny-ImageNet and
ImageNet-1K, outperforming all previous state-of-the-art methods by margins of
14.5% and 32.9%, respectively. Our approach also surpasses MTT [1] in terms of
speed by approximately 52× (ConvNet-4) and 16× (ResNet-18) faster with less
memory consumption of 11.6× and 6.4× during data synthesis. Our code and
condensed datasets of 50, 200 IPC with 4K recovery budget are available at link.

1 Introduction
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Figure 1: Left is data synthesis time vs. accuracy on ImageNet-1K with 10 IPC (Images Per Class).
Models include ConvNet-4, ResNet-{18, 50, 101}. † indicates ViT with 10M parameters [2]. Right is
the comparison of widely-used bilevel optimization and our proposed decoupled training scheme.

Over the past few years, the task of data condensation or distillation has garnered significant interest
within the domain of computer vision [3, 4, 5, 6, 7, 1]. By distilling large datasets into representative,
compact subsets, data condensation methods enable rapid training and streamlined storage, while
preserving essential information from the original datasets. The significance of data condensation on
both research and applications cannot be understated, as it plays a crucial role in the efficient handling

∗Equal contribution. Project page: https://zeyuanyin.github.io/projects/SRe2L/.
1We discard small datasets like MNIST and CIFAR to highlight the scalability and capability of the proposed

method on large-scale datasets for real-world applications.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/VILA-Lab/SRe2L
https://zeyuanyin.github.io/projects/SRe2L/
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Figure 2: Overview of our framework. It consists of three stages: in the first stage, a model is trained
from scratch to accommodate most of the crucial information from the original dataset. In the second
stage, a recovery process is performed to synthesize the target data from the Gaussian noise. In the
third stage, we relabel the synthetic data in a crop-level scheme to reflect the true label of the data.

and processing of vast amounts of data across numerous fields. Through the implementation of so-
phisticated algorithms, such as Meta-Model Matching [3, 5], Gradient Matching [8, 9, 7], Distribution
Matching [10, 6], and Trajectory Matching [1, 11], data condensation has made remarkable strides.
However, prior solutions predominantly excel in distilling small datasets such as MNIST, CIFAR,
Tiny-ImageNet [12], downscaled ImageNet [13] featuring low resolution, or a subset of ImageNet [7].
This limitation arises due to the prohibitive computational expense incurred from executing a massive
number of unrolled iterations during the bilevel optimization process (comprising an inner loop for
model updates and an outer loop for synthetic data updates). In our study, employing a meticulously
designed decoupling strategy for model training and synthetic data updating (as illustrated in Fig. 1
left), the proposed method is capable of distilling the entire large-scale ImageNet dataset at the
conventional resolution of 224×224 while maintaining state-of-the-art performance. Remarkably,
our training/synthesis computation outstrips the efficiency of prior approaches, even those utilizing
reduced resolution or subsets of ImageNet. A comparison of efficiency is provided in Table 1.

To address the huge computational and memory footprints associated with training, we propose a
tripartite learning paradigm comprised of Squeeze, Recover, and Relabel stages. This paradigm
allows for the decoupling of the condensed data synthesis stage from the real data input, as well as the
segregation of inner-loop and outer-loop optimization. Consequently, it is not restricted by the scale
of datasets, input resolution, or the size of network architectures. Specifically, in the initial phase,
rather than simultaneous sampling of real and synthetic data and its subsequent network processing
to update the target synthetic data, we bifurcate this process into Squeeze and Recover stages to
distinguish the relationship and reduce similarity between real and synthetic data.

In the subsequent phase, we exclusively align the batch normalization (BN) [14] statistics derived
from the model trained in the first phase to synthesize condensed data. In contrast to feature matching
solutions that perform the matching process solely on individual batches within each iteration, the
trained BN statistics on original data span the entire dataset, thereby providing a more comprehensive
and accurate alignment between the original dataset and synthetic data. Given that real data is not
utilized in this phase, the decoupled training can considerably diminish computational costs compared
to the preceding bilevel training strategy. In the final phase, we employ the models trained in the first
phase to relabel the synthetic data, serving as a data-label alignment process. An in-depth overview
of this process is illustrated in Fig. 2.

Advantages. Our approach exhibits the following merits: (1) It can process large resolution conden-
sation during training effortlessly with a justified computational cost. (2) Unlike other counterparts,
we can tackle the relatively large datasets of Tiny-ImageNet and ImageNet-1K to make our method
more practical for real-world applications. (3) Our approach can directly utilize many off-the-shelf
pre-trained large models that contain BN layers, which enables to further save the training overhead.

Extensive experiments are performed on Tiny-ImageNet and ImageNet-1K datasets. On ImageNet-1K
with 224×224 resolution and IPC 50, the proposed approach obtains a remarkable accuracy of 60.8%,
outperforming all previous methods by a large margin. We anticipate that our research will contribute
to the community’s confidence in the practical feasibility of large-scale dataset condensation using a
decoupled synthesis strategy from the real data, while maintaining reasonable computational costs.
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Methods Condensed Arch Time Cost (ms) Peak GPU Memory Usage (GB)

DM [10] ConvNet-4 18.11 10.7
MTT [1] ConvNet-4 12.64 48.9

SRe2L (Ours)
ConvNet-4 0.24 4.2
ResNet-18 0.75 7.6
ResNet-50 2.75 33.8

Table 1: Synthesis Time and Memory Consumption on Tiny-ImageNet (64×64 resolution) using a
single RTX-4090 GPU for all methods. Time Cost represents the consumption (ms) when generating
one image with one iteration update on synthetic data. Peak value of GPU memory usage is measured
or converted with a batch size of 200 (1 IPC as the dataset has 200 classes).

Contributions.

• We propose a new framework for large-scale dataset condensation, which involves a three-stage
learning procedure of squeezing, recovery, and relabeling. This approach has demonstrated excep-
tional efficacy, efficiency and robustness in both the data synthesis and model training phases.

• We conduct a thorough ablation study and analysis, encompassing the impacts of diverse data
augmentations for original data compression, various regularization terms for data recovery, and
diverse teacher alternatives for relabeling on the condensed dataset. The comprehensive specifications
of the learning process can offer valuable insights for subsequent investigations in the domain.

• To the best of our knowledge, this is the first work that enables to condense the full ImageNet-1K
dataset with an inaugural implementation at a standard resolution of 224×224, utilizing widely
accessible NVIDIA GPUs such as the 3090, 4090, or A100 series. Furthermore, our method attains
the highest accuracy of 60.8% on full ImageNet-1K within an IPC constraint of 50 using justified
training time and memory cost, outperforming all previous methods by a significant margin.

2 Approach

Data Condensation/Distillation. The objective of dataset condensation is to acquire a small synthetic
dataset that retains a substantial amount of information present in the original data. Suppose we have
a large labeled dataset T =

{
(x1,y1) , . . . ,

(
x|T |,y|T |

)}
, we aim to learn a small condensed dataset

Csyn =
{
(x̃1, ỹ1) , . . . ,

(
x̃|C|, ỹ|C|

)}
(|C| ≪ |T |) that preserves the crucial information in original

T . The learning objective on condensed synthetic data is:

θCsyn
= argmin

θ
LC(θ) (1)

where LC(θ)=E(x̃,ỹ)∈Csyn

[
ℓ(ϕθCsyn

(x̃), ỹ)
]
, ỹ is the soft label coresponding to the synthetic data x̃.

The ultimate goal of data condensation task is to synthesize data for achieving a certain/minimal
supremum performance gap on original evaluation set when models are trained on the synthetic
data and the original full dataset, respectively. Following the definition of coresets [15] and ϵ-
approximate [16], the objective of data condensation task can be formulated as achieving:

sup
{∣∣∣ℓ (ϕθT (x),y)− ℓ

(
ϕθCsyn

(x),y
)∣∣∣}

(x,y)∼T
≤ ϵ (2)

where ϵ is the performance gap for models trained on the synthetic data and the original full dataset.
Thus, we aim to optimize the synthetic data Csyn through:

argmin
Csyn,|C|

(
sup

{∣∣∣ℓ (ϕθT (x),y)− ℓ
(
ϕθCsyn

(x),y
)∣∣∣}

(x,y)∼T

)
(3)

Then, we can learn <data, label>∈ Csyn with the associated number of condensed data in each class.

Decoupling the condensed data optimization and the neural network training: Conventional
solutions, such as FRePo [5], CAFE [6], DC [8], typically choose for the simultaneous optimization
of the backbone network and synthetic data within a singular training framework, albeit in an iterative
fashion. The primary drawback associated with these joint methods is their computational burden
due to the unrolling of the inner-loop during each outer-loop update, coupled with bias transference
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from real to synthetic data as a result of truncated unrolling. The objective of this study is to devise
an efficient learning framework capable of individually decoupling model training and synthetic data
optimization. This approach circumvents information bias stemming from real data, concurrently
enhancing efficiency in handling diverse scales of datasets, model architectures, and image resolutions,
thereby bolstering effective dataset condensation. Our framework is predicated on the assumption
that pivotal information within a dataset can be adequately trained and preserved within a deep neural
network. The training procedure of our approach is elaborated in the following section.

2.1 Decoupling Outer-loop and Inner-loop Training

Inspired by recent advances in DeepDream [17], Inverting Image [18, 19] and data-free knowledge
transfer [20], we propose a decoupling approach to disassociate the traditional bilevel optimization
inherent to dataset condensation. This is accomplished via a tripartite process to reformulate it into a
unilevel learning procedure.
Stage-1 Squeeze ( ): During this stage, our objective is to extract pertinent information from the
original dataset and encapsulate it within the deep neural networks, evaluating the impact of various
data augmentation techniques, training strategies, etc. Deep neural networks typically comprise
multiple parametric functions, which transform high-dimensional original data (e.g., pixel space
of images) into their corresponding low-dimensional latent spaces. We can exploit this attribute to
abstract the original data to the pretrained model and then reconstruct them in a more focused manner,
akin to DeepDream [17] and Inverting Images [18, 19]. It’s noteworthy that the purpose of this stage
is to extract and encapsulate critical information from the original dataset. Hence, excessive data
augmentation resulting in enhanced performance does not necessarily lead to the desired models. This
approach diverges from previous solutions that sample two data batches from the original large-scale
dataset T and the learnable small synthetic dataset C. The learning procedure can be simply cast as a
regular model training process on the original dataset with a suitable training recipe:

θT = argmin
θ

LT (θ) (4)

where LT (θ) typically uses cross-entropy loss as LT (θ) = E(x,y)∈T [y log (p (x))].

Enabling BN Layers in ViT for Recovering Process: In contrast to distribution matching [10]
that aligns the feature distributions of the original and synthetic training data in sampled embedding
spaces, thus allowing for the use of a randomly initialized network, our matching mechanism is
solely performed on the Batch Normalization (BN) layers using their statistical properties, akin to
data-free knowledge transfer [20]. Unlike the feature matching solution which executes the matching
process on individual batches within each iteration, the referential BN statistics are calculated over the
entirety of the dataset, providing a more comprehensive and representative alignment with the original
dataset. Our experiments empirically substantiate that BN-matching can significantly outperform the
feature-matching method. BN layer is commonly used in ConvNet but is absent in ViT. To utilize
both ConvNet and ViT for our proposed data condensation approach, we engineer a BN-ViT which
replaces all LayerNorm by BN layers and adds additional BN layers in-between two linear layers
of feed-forward network, as also utilized in [21]. This marks the first instance of broadening the
applicability of the data condensation architecture from ConvNets to encompass ViTs as well.

Stage-2 Recover ( ): This phase involves reconstructing the retained information back into
the image space utilizing class labels, regularization terms, and BN trajectory alignment. Unlike
conforming to batch feature distributions or comprehensive parameter distributions, we solely track
the distribution of BN statistics derived from the original dataset. The pairing of BN and predictive
probability distribution restricts the optimization process to a singular level, thereby significantly
enhancing scalability. By aligning the final classification and intermediary BN statistics (mean
and variance), the synthesized images are compelled to encapsulate a portion of the original image
distribution. The learning objective for this phase can be formulated as follows:

argmin
Csyn,|C|

ℓ (ϕθT (x̃syn),y) +Rreg (5)

where Rreg is the regularization term. ϕθT is the model pre-trained in the first stage and it will be
frozen in this stage, we solely optimize the x̃syn as a single-level training process. Following [18, 20],
we discuss three regularizers that can be used and the ablation for them is provided in our experiments.
The first two regularizers are image prior regularisers of ℓ2 and total variation (TV) proposed in [18]:

Rprior (x̃syn) = αtvRTV(x̃syn) + αℓ2Rℓ2(x̃syn) (6)
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where Rℓ2 = ∥x̃syn∥2, this regularizer encourages image to stay within a target interval instead

of diverging. RTV =
∑

i,j

(
(x̃i,j+1 − x̃ij)

2
+ (x̃i+1,j − x̃ij)

2
) β

2

where β is used to balance the
sharpness of the image with the removal of “spikes” and smooth the synthetic data. While, this is not
necessary for dataset condensation since we care more about information recovery.

Learning Condensed Data with BN Consistency: DeepInversion [20] utilizes the feature distribu-
tion regularization term to improve the quality of the generated images. Here, we also leverage this
property as our recovering loss term. It can be formulated as:

RBN(x̃) =
∑
l

∥µl(x̃)− E (µl | T )∥2 +
∑
l

∥∥σ2
l (x̃)− E

(
σ2
l | T

)∥∥
2

≈
∑
l

∥∥µl(x̃)− BNRM
l

∥∥
2
+
∑
l

∥∥σ2
l (x̃)− BNRV

l

∥∥
2

(7)

where l is the index of BN layer, µl(x̃) and σ2
l (x̃) are mean and variance. BNRM

l and BNRV
l are

running mean and running variance in the pre-trained model at l-th layer, which are globally counted.

Multi-crop Optimization: RandomResizedCrop, a frequently utilized technique in neural network
training, serves as a preventative measure against overfitting. Inspired by this, we propose the strategy
of multi-crop optimization during the process of image synthesis with the aim of enhancing the
informational content of the synthesized images. In practice, we implement it by randomly cropping
on the entire image and subsequently resizing the cropped region to the target dimension of 224×224.
Under these circumstances, only the cropped region is updated during each iteration. This approach
aids in refining the recovered data when viewed from the perspective of cropped regions.

Stage-3 Relabel ( ): To match our multi-crop optimization strategy, also to reflect the true soft
label for the recovered data. We leverage the pre-generated soft label approach as FKD [22].

ỹi = ϕθT (x̃Ri
) (8)

where x̃Ri
is the i-th crop in the synthetic image and ỹi is the corresponding soft label. Finally, we

can train the model ϕθCsyn
on the synthetic data using the following objective:

Lsyn = −
∑
i

ỹi log ϕθCsyn
(x̃Ri) (9)

We found that this stage is crucial to make synthetic data and labels more aligned and also significantly
improve the performance of the trained models.

Discussion: How does the proposed approach reduce compute and memory consumption?
Existing solutions predominantly employ bilevel optimization [3, 23, 4] or long-range parameter
matching strategies [1, 11], which necessitate the feeding of real data into the network to generate
guiding variables (e.g., features, gradients, etc.) for target data updates, as well as for the backbone
network training, through an iterative process. These approaches incur considerable computational
and memory overhead due to the concurrent presence of real and synthetic data on computational
hardware such as GPUs, thereby rendering this training strategy challenging to scale up for larger
datasets and models. To this end, a natural idea is to decouple real and synthetic data during the
training phase, thereby necessitating only minimal memory during each training session. This is
achieved by bifurcating the bilevel training into a two-stage process: squeezing and recovering.
Moreover, we can conveniently utilize off-the-shelf pre-trained models for the first squeezing stage.

3 Experiments

In this section, we evaluate the performance of our proposed SRe2L over various datasets, models and
tasks. First, we conduct extensive ablation experiments to investigate the effect of each component
in three stages. Next, we demonstrate the superior results of SRe2L in large-scale datasets, cross-
architecture generalization, and continual learning application. Finally, we provide the comparison of
visualizations on distilled data with other state-of-the-art methods.

Experiment Setting. We evaluate our method SRe2L on two large-scale datasets Tiny-ImageNet [12]
and full ImageNet-1K [24]. Detailed comparison among variants of ImageNet-1K is in appendix.
For backbone networks, we employ ResNet-{18, 50, 101} [25], ViT-Tiny [26], and our new con-
structed BN-ViT-Tiny (Sec. 2.1) as the target model training. For distilling ImageNet-1K, we
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Recovery model Squeezing Budget (iteration) Data Augmentation

50 100 200 400 Mixup CutMix

ResNet-18 37.88 37.49 32.18 23.88 35.59 25.90
ResNet-50 39.19 33.63 30.65 26.43 36.95 29.61

Table 2: Ablation of squeezing budget and data augmentation on Tiny-ImageNet.

recover the data from PyTorch off-the-shelf pre-trained ResNet-{18, 50} with the Top-1 accuracy
of {69.76%, 76.13%} for saving re-training computational overhead. For distilling Tiny-ImageNet,
ResNet-{18, 50} are used as base models, while the first 7×7 Conv layer is replaced by 3×3 Conv
layer and the maxpool layer is discarded, following MoCo (CIFAR) [27]. After that, they are trained
from scratch on Tiny-ImageNet. More implementation details are provided in appendix.

Evaluation and baselines. Following previous works [3, 1, 8], we evaluate the quality of condensed
datasets by training models from scratch on them and report the test accuracy on real val datasets.

3.1 Squeezing Analysis

Numerous training methods exist to enhance the accuracy of models [28], including extended training
cycles/budgets and data augmentation strategies such as Mixup [29] and CutMix [30]. We further
examine the performance of synthetic data regenerated from models demonstrating varied levels
of accuracy. This investigation is aimed at addressing a compelling question: Does a model with
superior squeezing ability yield more robust recovered data? Here, “a model with superior squeezing
ability” is defined as a model that exhibits strengthened accuracy on the validation set.

Squeezing Budget. In Table 2, we observe a decrement in the performance of the recovered model
as the squeezing budget escalates. This suggests an increasing challenge in data recovery from a
model that has been trained over more iterations. Consequently, we adopt a squeezing budget of 50
iterations as the default configuration for our experiments on Tiny-ImageNet.

Data Augmentation. Table 2 also shows that data augmentation methods in the squeeze stage
decrease the final accuracy of the recovered data. In summary, results on Tiny-ImageNet indicate
that extending the training duration and employing data augmentation during the squeeze phase
exacerbates the complexity of data recovery from the squeezed model.

3.2 Recovering Analysis

The condensed data are crafted and subsequently relabeled utilizing a pre-trained ResNet-18 with a
temperature of 20. Then, we report the val performance of training a ResNet-18 from scratch.

Image Prior Regularization. RTV and Rℓ2 are extensively applied in image synthesis meth-
ods [18, 31]. However, in the pursuit of extracting knowledge from the pre-trained model, our focus
is predominantly on the recuperation of semantic information as opposed to visual information.
Analyzing from the standpoint of evaluation performance as shown in appendix, Rℓ2 and RTV barely
contribute to the recovery of image semantic information, and may even serve as impediments to data
recovery. Consequently, these image prior regularizations are omitted during our recovery phase.

Multi-crop Optimization. To offset the RandomResizedCrop operation applied to the training data
during the subsequent model training phase, we incorporate a corresponding RandomResizedCrop
augmentation on synthetic data during recovery. This implies that only a minor cropped region in the
synthetic data undergoes an update in each iteration. Our experimentation reveals that the multi-crop
optimization strategy facilitates a notable improvement in validation accuracy, as in Appendix Table 8.

A comparative visualization and comparison with other non-crop settings is shown in Fig. 3. In the
last column (SRe2L), multiple miniature regions enriched with categorical features spread across the
entire image. Examples include multiple volcanic heads, shark bodies, bee fuzz, and mountain ridges.
These multiple small feature regions populate the entire image, enhancing its expressiveness in terms
of visualization. Therefore, the cropped regions on our synthetic images are not only more closely
associated with the target categories but also more beneficial for soft label model training.
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Dataset Recovery model Recovering Budget Time (ms)
0.5k 1k 2k 4k

Tiny-ImageNet ResNet-18 34.82 37.88 41.35 41.11 0.75
ResNet-50 35.92 39.19 39.59 39.29 2.75

ImageNet-1K ResNet-18 38.94 43.69 46.71 46.73 0.83
ResNet-50 21.38 28.69 33.20 35.41 2.62

Table 3: Top-1 validation accuracy of ablation using ResNet-{18, 50} as recovery model with different
updating iterations, and ResNet-18 as student model. “Time” represents the consuming time (ms)
when training 1 image per iteration on one single NVIDIA 4090 GPU.

+RTV + Rℓ2
+RTV − Rℓ2

−RTV + Rℓ2
−RTV − Rℓ2

−RTV−Rℓ2
+Crop

Figure 3: Visualization of distilled examples on ImageNet-1K under various regularization terms and
crop augmentation settings. Selected classes are {Volcano, Hammerhead Shark, Bee, Valley}.

Recover Budget. We conduct various ablation studies to evaluate the impact of varying recovery
budgets on the quality of synthetic data. The recovery budgets are designated as [0.5k, 1k, 2k, 4k]. As
in Table 3, it indicates that employing a longer recovery budget on the same model results in superior
classification accuracy on the recovered data. In the case of recovery from diverse models, the results
demonstrate that the data recovery under the same iterative setting and budget from ResNet-50 is
inferior to that from ResNet-18 on both datasets. This suggests that the process of data recovery from
larger pre-trained models is more challenging on large-scale datasets, necessitating more iterations to
ensure that the recovered data achieves comparable performance on downstream classification tasks.
To strike a balance between performance and time cost, we impose a recovery budget of 1k iterations
on Tiny-ImageNet and 2k iterations on ImageNet-1K for the ablations, and 4k for the best in Table 4.

3.3 Relabeling Analysis

We further study the influence of varying relabeling models and distinct softmax temperatures on
different architectural models being optimized. In Fig. 4, we present three subfigures that represent
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Figure 4: Top-1 val accuracy of models trained on various labels and temperature settings under IPC
50. T and S represent the reference model for relabeling and the target model to be trained, separately.
R18, R50, and R101 are the abbreviation of ResNet-18, ResNet-50, and ResNet-101.

the training accuracy of the models on labels generated by three pre-trained models: ResNet-{18,
50, 101}. The training data utilized for these experiments is the same, which is recovered from a
pre-trained ResNet-18 model.

Relabeling Model. In each row of Fig. 4 (i.e., on the same dataset), the results of three subfigures
indicate that a smaller-scale teacher which is close or identical to the recovery model architecture
always achieves better accuracy across ResNet-18, ResNet-50 and ResNet-101. Thus, it can be
inferred that the labels of the recovered data are most accurate when the relabeling model aligns with
the recovery model. Moreover, Top-1 errors tend to escalate with increasing disparity between the
relabeling model and the recovery model. Consequently, in our three-stage methodology, we opt to
employ an identical model for both recovery and relabeling processes.

Temperature on Soft Label. We conduct experiments encompassing five different temperature
selections [1, 5, 10, 15, 20] specifically for label softmax operations under distillation configura-
tion as [22]. The result indicates that the Top-1 accuracy experiences a rapid surge initially and
subsequently plateaus when the temperature setting exceeds 10. The maximum Top-1 accuracy is
recorded as 60.81% when the temperature is fixed at 20, employing ResNet-18 as the teacher model
and ResNet-101 as the student model. This observation underscores the beneficial effect of a higher
temperature setting for label softmax operations in the training of the student model. Consequently,
we elect to utilize a temperature value of 20 in our subsequent evaluation experiments.

Model Training. Contrary to previous data condensation efforts, where different architectures could
not be effectively trained on the condensed data due to the mismatch of recovery models or overfitting
on the limited synthetic data scale, our condensed data demonstrate the informativeness and training
scalability as the inherent properties in real data. In each subfigure within Fig. 4, we observe a
progressive increase in accuracy when training ResNet-18, ResNet-50, and ResNet-101 as the student
networks. This indicates that our condensed data does not suffer from overfitting recovered from the
squeezing model, and during inference, the Top-1 accuracy is consistently increasing using a network
with enhanced capabilities.

3.4 Condensed Dataset Evaluation

Tiny-ImageNet. The results derived from the Tiny-ImageNet dataset are presented in the first
group of Table 4. Upon evaluation, it can be observed that MTT achieves 28.0% under the IPC
50. In contrast, our results on ResNet-{18, 50, 101} architectures are 41.1%, 42.2%, and 42.5%,
respectively, which significantly surpass the performance of MTT. A noteworthy observation is
that our stronger backbones not only accomplish superior accuracy but are also robust for different
recovery architectures. In light of the results under IPC 50 and 100 settings on the relatively
small Tiny-ImageNet dataset, it is apparent that the larger backbone did not yield a proportional
enhancement in performance from ResNet-18 to ResNet-101 by our method in Table 4 and Fig. 4.
While, this is different from the observation on full ImageNet-1K that we discuss elaborately below.
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Dataset IPC MTT [1] TESLA [11] TESLA [11] (ViT) TESLA [11] (R18) SRe2L (R18) SRe2L (R50) SRe2L (R101)

Tiny-IN 50 28.0±0.3 - - - 41.1±0.4 42.2±0.5 42.5±0.2
100 - - - - 49.7±0.3 51.2±0.4 51.5±0.3

IN-1K

10 64.0±1.3† 17.8±1.3 11.0±0.2 7.7±0.1 21.3±0.6 28.4±0.1 30.9±0.1
50 - 27.9±1.2 - - 46.8±0.2 55.6±0.3 60.8±0.5

100 - - - - 52.8±0.3 61.0±0.4 62.8±0.2
200 - - - - 57.0±0.4 64.6±0.3 65.9±0.3

Table 4: Comparison with baseline models. † indicates the ImageNette dataset, which contains only
10 classes. TESLA [11] uses the downsampled ImageNet-1K dataset. Our results are derived from the
full ImageNet-1K, which is more challenging on computation and memory, meanwhile, presenting
greater applicability potential in real-world scenarios. The recovery model used in the table is R18.

Squeezed Model Evaluation Model

DeiT-Tiny ResNet-18 ResNet-50 ResNet-101

DeiT-Tiny-BN 25.36 24.69 31.15 33.16
ResNet-18 15.41 46.71 55.29 60.81

Table 5: ImageNet-1K Top-1 on Cross-Archtecture Generalization. Two recovery/squeezed models
are used: DeiT-Tiny-BN and ResNet-18. Four evaluation models: DeiT-Tiny, ResNet-{18, 50, 101}.

ImageNet-1K. As shown in the second group of Table 4, employing the same model architecture of
ResNet-18 under IPC 10, our approach improves the performance of TESLA from a baseline of 7.7%
to a significance of 21.3%. Contrary to TESLA, where the performance deteriorates with larger model
architectures, our proposed approach capitalizes on larger architectures, displaying an appreciable
proportional performance enhancement. This indicates significant promise in the contemporary era
of large-scale models. On IPC 50, 100 and 200, our method obtains consistent boosts on accuracy.

3.5 Cross-Architecture Generalization

Centipede Jellyfish Snail Fly

Fly Snail Centipede Beacon Triumphal Arch Keypad

King Penguin Siamese Cat Lion Bee Cassette Player Garbage Truck School Bus Cucumber Orange Lemon

King Penguin Cucumber Garbage Truck

Figure 5: Visualization of MTT [1] and our SRe2L.
The upper two rows are synthetic Tiny-ImageNet
and the lower two rows are synthetic ImageNet-1K
(the first row is MTT and second is ours).

It is important to verify the generalization prop-
erty of our condensed datasets, ensuring its abil-
ity to effectively generalize to new architectures
that it has not encountered during the synthe-
sis phase. Fig. 4 and Table 5 demonstrate that
our condensed dataset exhibits proficient cross-
model generalization across ResNet-{18, 50,
101} and ViT-T. The results reveal that our con-
densed datasets maintain robustness across dis-
parate and larger architectures. However, we
observed suboptimal performance of ViT on
the condensed dataset, potentially due to the
model’s inherent need for substantial training
data as introduced in [26].

3.6 Synthetic Image Visualization

Fig. 5 provides a visual comparison of selected
synthetic images from our condensed dataset
and the corresponding images from the MTT
condensed dataset. The synthetic images gener-
ated by our method manifest a higher degree of
clarity on semantics, effectively encapsulating
the attributes and contours of the target class. In
contrast, synthetic images from MTT appear considerably blurred, predominantly capturing color
information while only encapsulating minimal details about the target class. Consequently, SRe2L
produces superior-quality images that not only embed copious semantic information to augment
validation accuracy but also demonstrate superior visual performance.
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3.7 Application: Continual Learning
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Figure 6: 5-step and 10-step class-incremental learning on Tiny-ImageNet.

Many prior studies [10, 5, 32, 7] have employed condensed datasets for continual learning to assess
the quality of the synthetic data. We adhere to the method outlined in DM [10] class-incremental
learning implementation, which is based on GDumb [33]. This method sequentially stores prior
training data in memory and utilizes both new training data and stored data to learn a model from
scratch. To demonstrate the superiority of our method in handling large-scale data, we conduct class
incremental learning on Tiny-ImageNet, incorporating an escalating memory budget of 100 images
per class, and training with ResNet-18. Fig. 6 shows both 5-step and 10-step class-incremental
learning strategies, which partition 200 classes into either 5 or 10 learning steps, accommodating 40
and 20 classes per step respectively. Our results are clearly better than the baselines.

4 Related Work

Data condensation or distillation aims to create a compact synthetic dataset that preserves the essential
information in the large-scale original dataset, making it easier to work with and reducing training
time while achieving the comparable performance to the original dataset. Previous solutions are
mainly divided into four categories: Meta-Model Matching optimizes for the transferability of models
trained on the condensed data and uses an outer-loop to update the synthetic data when generalized
to the original dataset with an inner-loop to train the network, methods include DD [3], KIP [23],
RFAD [4], FRePo [5] and LinBa [34]; Gradient Matching performs a one-step distance matching
process on the network trained on original dataset and the same network trained on the synthetic
data, methods include DC [8], DSA [32], DCC [9] and IDC [7]; Distribution Matching directly
matches the distribution of original data and synthetic data with a single-level optimization, methods
include DM [10], CAFE [6], HaBa [35], IT-GAN [36], KFS [9]; Trajectory Matching matches the
training trajectories of models trained on original and synthetic data in multiple steps, methods
include MTT [1] and TESLA [11]. Our proposed decoupling method presents a new perspective for
tackling this task, while our BN-matching recovering procedure can also be considered as a special
format of Distribution Matching scheme on the synthetic data and global BN statistics distributions.

5 Conclusion

We have presented a novel three-step process approach for the dataset condensation task, providing
a more efficient and effective way to harness the power of large-scale datasets. By employing
the sequential steps of squeezing, recovering, and relabeling, this work condenses the large-scale
ImageNet-1K while retaining its essential information and performance capabilities. The proposed
method outperforms existing state-of-the-art condensation approaches by a significant margin, and
has a wide range of applications, from accelerating the generating and training process to enabling
the method that can be used in resource-constrained environments. Moreover, the study demonstrates
the importance of rethinking conventional methods of data condensation and model training, as new
solutions can lead to improvements in both computational efficiency and model performance. As the
field of data condensation continues to evolve, the exploration of targeting approaches, such as the
one presented in this work, will be crucial for the development of future condensation approaches
that are more efficient, robust, and capable of handling vast amounts of data in a sustainable manner.

Limitation and Future Work: At present, a performance disparity persists between the condensed
dataset and the original full dataset, indicating that complete substitution of the full data with
condensed data is yet to be feasible. Another limitation is the extra storage for soft labels. Moving
forward, our research endeavors will concentrate on larger datasets such as the condensation of
ImageNet-21K, as well as other data modalities encompassing language and speech.

10



References

[1] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2022. 1, 2, 3, 5, 6, 9, 10, 14, 17, 20

[2] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-bench: Dataset condensation bench-
mark. arXiv preprint arXiv:2207.09639, 2022. 1

[3] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
arXiv preprint arXiv:1811.10959, 2018. 1, 2, 5, 6, 10

[4] Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Efficient dataset distillation using
random feature approximation. arXiv preprint arXiv:2210.12067, 2022. 1, 5, 10

[5] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature
regression. In Advances in Neural Information Processing Systems, 2022. 1, 2, 3, 10, 14, 17

[6] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 1, 2, 3, 10

[7] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong,
Jung-Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameteri-
zation. In Proceedings of the 39th International Conference on Machine Learning, 2022. 1, 2,
10, 14

[8] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
arXiv preprint arXiv:2006.05929, 2020. 2, 3, 6, 10

[9] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset
condensation with contrastive signals. In International Conference on Machine Learning, pages
12352–12364. PMLR, 2022. 2, 10

[10] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In IEEE/CVF
Winter Conference on Applications of Computer Vision, WACV 2023, Waikoloa, HI, USA,
January 2-7, 2023, 2023. 2, 3, 4, 10, 14, 17

[11] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-
1k with constant memory. In International Conference on Machine Learning, pages 6565–6590.
PMLR, 2023. 2, 5, 9, 10, 14, 17

[12] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015. 2,
5, 14

[13] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as
an alternative to the CIFAR datasets. arXiv preprint arXiv:1707.08819, 2017. 2, 14

[14] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. pmlr, 2015. 2

[15] Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for machine
learning. arXiv preprint arXiv:1703.06476, 2017. 3

[16] Noveen Sachdeva and Julian McAuley. Data distillation: A survey. arXiv preprint
arXiv:2301.04272, 2023. 3

[17] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper into
neural networks. Google research blog, 20(14):5, 2015. 4

[18] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by invert-
ing them. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 5188–5196, 2015. 4, 6

[19] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4829–4837, 2016. 4

11



[20] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem,
Niraj K Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8715–8724, 2020. 4, 5

[21] Zhuliang Yao, Yue Cao, Yutong Lin, Ze Liu, Zheng Zhang, and Han Hu. Leveraging batch nor-
malization for vision transformers. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 413–422, 2021. 4

[22] Zhiqiang Shen and Eric Xing. A fast knowledge distillation framework for visual recognition.
In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXIV, pages 673–690. Springer, 2022. 5, 8

[23] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. Advances in Neural Information Processing Systems,
34:5186–5198, 2021. 5, 10

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 5, 14

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. 5

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 5, 9

[27] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019. 6

[28] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks
for image classification with convolutional neural networks. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 558–567, 2018. 6

[29] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In International Conference on Learning Representations, 2018. 6

[30] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Young Joon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pages 6022–6031, 2019. 6

[31] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 427–436, 2015. 6

[32] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pages 12674–12685. PMLR, 2021. 10

[33] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that
questions our progress in continual learning. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pages 524–540.
Springer, 2020. 10

[34] Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable
memories for neural networks. arXiv preprint arXiv:2206.02916, 2022. 10

[35] Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via
factorization. Advances in Neural Information Processing Systems, 35:1100–1113, 2022. 10

[36] Bo Zhao and Hakan Bilen. Synthesizing informative training samples with gan. arXiv preprint
arXiv:2204.07513, 2022. 10

[37] Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet,
March 2019. 14

[38] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision -
ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part
XI, 2020. 14

12



[39] TorchVision maintainers and contributors. Torchvision image classification refer-
ence training scripts. https://github.com/pytorch/vision/tree/main/references/
classification, 2016. 15

[40] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008. 17

[41] Angus Galloway, Anna Golubeva, Mahmoud Salem, Mihai Nica, Yani Ioannou, and Graham W
Taylor. Bounding generalization error with input compression: An empirical study with infinite-
width networks. Transactions on Machine Learning Research, 2022. 18

[42] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pages
5171–5180. PMLR, 2019. 18

[43] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 ieee information theory workshop (itw), pages 1–5. IEEE, 2015. 18

[44] Ravid Shwartz-Ziv, Amichai Painsky, and Naftali Tishby. Representation compression and
generalization in deep neural networks. 2018. 18

13

https://github.com/pytorch/vision/tree/main/references/classification
https://github.com/pytorch/vision/tree/main/references/classification


Appendix
In the appendix, we provide details omitted in the main text, including:

• Section A: Implementation Details.

• Section B: Low-Resolution Data.

• Section C: Feature Embedding Distribution.

• Section D: Theoretical Analysis.

• Section E: More Visualization of Synthetic Data.

A Implementation Details

A.1 Dataset Statistics

Table 6 enumerates various permutations of ImageNet-1K training set, delineated according
to their individual configurations. Tiny-ImageNet [12] incorporates 200 classes derived from
ImageNet-1K, with each class comprising 500 images possessing a resolution of 64×64. Ima-
geNette/ImageWoof [37] (alternatively referred to as subsets of ImageNet) include 10 classes from
analogous subcategories, with each image having a resolution of 112×112. The MTT [1] framework
introduces additional 10-class subsets of ImageNet, encompassing ImageFruit, ImageSquawk, Image-
Meow, ImageBlub, and ImageYellow. ImageNet-10/100 [38] samples 10/100 classes from ImageNet
while maintaining an image resolution of 224×224. Downsampled ImageNet-1K rescales the entirety
of ImageNet data to a resolution of 64×64. In our experiments, we choose two standard datasets of
relatively large scale: Tiny-ImageNet and the full ImageNet-1K.

Training Dataset #Class #Img per class Resolution Method

Tiny-ImageNet [12] 200 500 64×64 MTT [1], FRePo [5], DM [10], SRe2L (Ours)
ImageNette/ImageWoof [37] 10 ∼1,000 112×112 MTT [1], FRePo [5]
ImageNet-10/100 [38] 10/100 ∼1,200 224×224 IDC [7]
Downsampled ImageNet-1K [13] 1,000 ∼1,200 64×64 TESLA [11], DM [10]
Full ImageNet-1K [24] 1,000 ∼1,200 224×224 SRe2L (Ours)

Table 6: Variants of ImageNet-1K training set with different configurations.

A.2 Squeezing Details

Data Augmentation. Table 2 in the main paper illustrates that the utilization of data augmentation
approaches during the squeezing phase contributes to a decrease in the final accuracy of the recovered
data. To summarize, the results on Tiny-ImageNet indicate that lengthening the training budget and
the application of more data augmentations in the squeezing phase intensify the intricacy involved in
data recovery from the compressed model, which is not desired.

Parallel conclusions are inferred from the compressed models for the ImageNet-1K dataset. For our
experimental setup, we aimed to extract data from a pre-trained ResNet-50 model with available
V1 and V2 weights in the PyTorch model zoo. The results propose that the task of data extraction
poses a greater challenge from the ResNet-50 model equipped with V2 weights as compared to the
model incorporating V1 weights. This can be attributed to the fact that models utilizing V1 weights
are trained employing a rudimentary recipe, whereas models with V2 weights encompass numerous
training enhancements, such as more training budget and data augmentations, to achieve cutting-edge
performance. It is observed that these additional complexities impede the data recovery process even
the pre-trained models are stronger. Therefore, the pre-trained models we employ for the recovery of
ImageNet-1K are those integrating V1 weights from the PyTorch model zoo.

Hyper-parameter Setting. We provide hyper-parameter settings for the two datasets in detail.

• Tiny-ImageNet: We train modified ResNet-{18, 50} models on Tiny-ImageNet data with the
parameter setting in Table 7a. The well-trained ResNet-{18, 50} models achieve Top-1 accuracy of
{59.47%, 61.17%} under the 50 epoch training budget.
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config value

optimizer SGD
base learning rate 0.2
weight decay 1e-4
optimizer momentum 0.9
batch size 256
learning rate schedule cosine decay
training epoch 100
augmentation RandomResizedCrop

(a) Tiny-ImageNet squeezing setting.

config value

optimizer AdamW
base learning rate 0.001
weight decay 0.01
optimizer momentum β1, β2 = 0.9, 0.999
batch size 1,024
learning rate schedule cosine decay
training epoch 300
augmentation RandomResizedCrop

(b) ImageNet-1K validation setting.

config value

αBN 1.0
optimizer Adam
base learning rate 0.1
optimizer momentum β1, β2 = 0.5, 0.9
batch size 100
learning rate schedule cosine decay
recovering iteration 1,000
augmentation RandomResizedCrop

(c) Tiny-ImageNet recovering setting.

config value

αBN 0.01
optimizer Adam
base learning rate 0.25
optimizer momentum β1, β2 = 0.5, 0.9
batch size 100
learning rate schedule cosine decay
recovering iteration 2,000
augmentation RandomResizedCrop

(d) ImageNet-1K recovering setting.

Table 7: Hyper-parameter settings in three stages.

• ImageNet-1K: We use PyTorch off-the-shelf ResNet-{18, 50} with V1 weights and Top-1 accuracy
of {69.76%, 76.13%} as squeezed/condensed models. In the original training script [39], ResNet
models are trained for 90 epochs with a SGD optimizer, learning rate of 0.1, momentum of 0.9 and
weight decay of 1× 10−4.

BN-ViT Model Structure. To give a clear illustration of incorporating BN layers into ViT, we
provide more details in this subsection. The definitions of vanilla ViT and BN-ViT are presented
below to show the structure modification. The vanilla ViT can be formulated as:

z′ℓ = MHSA (LN (zℓ−1)) + zℓ−1

zℓ = FFN (LN (z′ℓ)) + z′ℓ

where z′ℓ is the intermediate representation before Feed-forward Network (FFN), and zℓ is that after
FFN and residual connection. FFN contains two linear layers with a GELU non-linearity in between
them, i.e.,

FFN(z′ℓ) =
(
GELU

(
z′ℓW

1
ℓ + b1ℓ

))
W 2

ℓ + b2ℓ

The newly constructed BN-ViT is:

z′ℓ = MHSA (BN (zℓ−1)) + zℓ−1

zℓ = FFNBN (BN (z′ℓ)) + z′ℓ

where we add one additional BN layer in-between two linear layers of FFN, i.e.,

FFNBN(z
′
ℓ) =

(
GELU

(
BN

(
z′ℓW

1
ℓ + b1ℓ

)))
W 2

ℓ + b2ℓ

We follow the DeiT official training recipe to train a DeiT-Tiny-BN model for 300 epochs with an
AdamW optimizer, cosine decayed learning rate of 5× 10−4, weight decay of 0.05 and 5 warmup
epochs.
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Ablation Top-1 acc. (%)

RTV Rℓ2 Random Crop Tiny-ImageNet ImageNet-1K

✓ ✓ ✗ 29.87 22.92
✓ ✗ ✗ 29.92 23.15
✗ ✓ ✗ 30.11 40.81
✗ ✗ ✗ 30.30 40.37
✗ ✗ ✓ 37.88 46.71

Table 8: Top-1 validation accuracy under regularization ablation settings. ResNet-18 is used in all
three stages with the relabeling temperature τ = 20.

A.3 Recovering Details

Regularization Terms. We conduct a large number of ablation experiments under varying regular-
ization term conditions, as illustrated in Table 8. The two image prior regularizers, ℓ2 regularization
and total variation (TV), are not anticipated to enhance validation accuracy as our primary focus
is on information recovery rather than image smoothness. Consequently, we exclude these two
regularization terms from our experiments.

Memory Consumption and Computational Cost. Regarding memory utilization, the memory
accommodates a pre-trained model, reconstructed data, and the corresponding computational graph
during the data recovery phase. Unlike the MTT approach, which necessitates all model states across
all epochs during training to align with the trajectory, our proposed methodology, SRe2L, merely
requires the statistical data from each BN layer, stored within the condensed model, for synthetic
image optimization. In terms of total computational overhead, it is directly proportional to the number
of recovery iterations. To establish a trade-off between performance and computational time, we
enforce a recovery budget of 1k iterations for Tiny-ImageNet and 2k iterations for ImageNet-1K in
ablation experiments. Our best accuracy, achieved on condensed data from 4k recovery iterations, is
presented in Table 4 in the main paper.

Hyper-parameter Setting. We calculate the total recovery loss ℓtotal = argmin
Csyn,|C|

ℓ (ϕθT (x̃syn),y) +

αBNRBN and update synthetic data with the parameter setting in Table 7c and Table 7d for Tiny-
ImageNet and ImageNet-1K, respectively.

A.4 Relabeling & Validation Details

In this experiment, we utilize an architecture identical to that of a recovery model to provide soft
labels as a teacher for synthesized images. We implement a fast knowledge distillation process to
isolate the utilization of teacher models in post validation training with a training budget of 300
epochs and a temperature setting of τ = 20.

Hyper-parameter Setting. Regarding Tiny-ImageNet, we leverage the condensed data and the
retargeted labels to train the validation model over a span of 100 epochs, with all other training
parameters adhering to the condensing configurations outlined in Table 7a. In the case of ImageNet-
1K, we apply CutMix augmentation with mix probability p = 1.0 and Beta distribution β = 1.0 to
train the validation model in accordance with the parameter configurations presented in Table 7b.

B Low-Resolution Data

To demonstrate our method’s effectiveness on low-resolution datasets, we first conduct additional
ablation experiments on ImageNet-1K dataset, including down-sampled resolutions of 112×112 and
64×64. In Table 9, the validation accuracy increases as the image resolution size grows, demonstrating
that our method is more suitable for handling high-resolution datasets with better effectiveness.

We then conduct experiments on the CIFAR datasets to demonstrate the efficacy of our method
when applied to small-scale datasets with fewer classes and a lower image resolution of 32×32.
The adapted ResNet-18 is used as a backbone model throughout our SRe2L’s three phases, and the
hyper-parameter settings are presented in Table 10. As shown in Table 11, our results on the relatively
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Dataset (IPC=50) ResNet-18 ResNet-50 ResNet-101

IN-1K-64×64 35.27 42.26 44.37
IN-1K-112×112 34.15 42.76 45.25

IN-1K-224×224 46.75 55.62 60.81

Table 9: Top-1 validation accuracy on distilled and down-sampled ImageNet-1K datasets.

large CIFAR-100 dataset are on par with those of leading-edge methods, such as DM, FrePo, MTT,
and TESLA, among others. However, on the smaller CIFAR-10 dataset, a clear gap exists. Overall,
the additional CIFAR experiments suggest that our approach might also offer significant benefits for
the lower-resolution dataset, and we highlight that our approach continues to demonstrate superior
computational efficiency and enhanced processing speed when applied to these datasets.

config value

optimizer SGD
base learning rate 0.1
momentum 0.9
weight decay 5e-4
batch size 128
learning rate schedule cosine decay
training epoch 200 (squeeze) / 400 (val)
augmentation RandomCrop

(a) Squeezing/validation setting.

config value

αBN 0.01
optimizer Adam
base learning rate 0.25
optimizer momentum β1, β2 = 0.5, 0.9
batch size 100
temperature 30
learning rate schedule cosine decay
recovery iteration 1,000

(b) Recovery setting.

Table 10: Hyper-parameter settings on CIFAR-100.

IPC DM [10] FrePo [5] MTT [1] TESLA [11] SRe2L

10 29.70 ± 0.30 41.30 ± 0.20 40.10 ± 0.40 41.70 ± 0.30 23.48 ± 0.80
50 43.60 ± 0.40 44.30 ± 0.20 47.70 ± 0.20 47.90 ± 0.30 51.35 ± 0.79
100 – – – – 57.06 ± 1.23
200 – – – – 59.64 ± 1.24

Table 11: Top-1 validation accuracy on distilled CIFAR-100 dataset.

C Feature Embedding Distribution

We feed the image data through a pretrained ResNet-18 model, subsequently extracting the feature
embedding prior to the classification layer for the purpose of executing t-SNE [40] dimensionality
reduction and visualization. Fig. 7a exhibits two distinct feature embedding distributions of synthetic
Tiny-ImageNet data, sourced from 3 classes in MTT’s and SRe2L’s condensed datasets, respectively.
Relative to the distribution present in MTT, SRe2L’s synthetic data from differing classes displays a
more dispersed pattern, whilst data from identical classes demonstrates a higher degree of clustering.
This suggests that the data synthesized by SRe2L boasts superior discriminability with respect
to feature embedding distribution and can therefore be utilized to train models to attain superior
performance. Fig. 7b illustrates feature embedding distributions of SRe2L’s synthetic ImageNet-1K
data derived from 8 classes. Our synthetic ImageNet-1K data also exemplifies exceptional clustering
and discriminability attributes.

D Theoretical Analysis

We provide a theoretical analysis of the generalization ability on the condensed dataset. Dataset con-
densation task generally aims to train on the condensed data meanwhile achieving good performance
on the original val data. Given the significance of estimating the generalization error (GE) of deep
neural networks as a method for evaluating their ability to generalize, we adopt this approach for
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Figure 7: Feature embedding distribution on synthetic data of Tiny-ImageNet and ImageNet-1K.
ResNet-18 is used as the feature embedding extractor.

assessing the generalization capability of our condensed dataset for analyzing the generalization/error
bounds between models trained on original data and condensed data.

Specifically, we employ the Mutual Information (MI) between the original/condensed input and the
final layer representations to carry out this analysis, using the same network architecture limit to
bound MI, in line with the methodology outlined in [41]. To elaborate further:

The MI between two variables X and D is:

I(X;D) ≡
∑
x,d

p(x, d) log
p(x, d)

p(x)p(d)
= Ep(x,d)

[
log

p(d | x)
p(d)

]
where X is the input sample, D is the input representation, i.e., model’s output. The *leave one out*
upper bound (UB) [42] can be utilized to conservatively bound MI:

I(X;D) ≤ E

[
1

N

N∑
i=1

log
p (di | xi)

1
N−1

∑
j ̸=i p (di | xj)

]
= IUB

Following the information theory fundamentals, by applying the conventional Probably Approxi-
mately Correct (PAC) of GE bound, we can obtain the bound on GE as:

GE <

√
log(|H|) + log(1/δ)

2Ntrn

where |H| is the hypothesis-class cardinality and Ntrn is the number of training examples. For
the synthetic data, Ntrn = |Csyn|, while for the full data, Ntrn = Nori. The confidence parameter,
denoted by δ and ranging between 0 and 1, specifies the likelihood that the bound remains consistent
with respect to the chosen Ntrn training samples.

According to the property of deep neural networks [41], the cardinality of the hypothesis space
reduces to |H| ≈ 2|T | where |H| is the number of class-homogeneous clusters that the backbone
network distinguishes. An estimate for the number of clusters can then be obtained by |T | ≈
2H(X)/2H(X|Z) = 2I(X;Z).

The ability of Input Compression Bound (ICB) [43, 44] is to predict changes in GE under different
dataset interventions, it then can be formulated as:

GEICB <

√
2I(X;D) + log(1/δ)

2Ntrn

Thus, we can have the generalization error bound for the condensed data as:

GEsyn
ICB <

√
2I(X;D) + log(1/δsyn)

2|Csyn|

where the generalization error bound for full dataset is GEfull
ICB <

√
2I(X;D)+log(1/δfull)

2Ntrn
.
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E More Visualization of Synthetic Data

We provide more visualization comparisons on synthetic Tiny-ImageNet between MTT and SRe2L in
Fig. 8. Additionally, we visualize synthetic samples pertaining to ImageNet-1K in Fig. 9 and Fig. 10
for a more comprehensive understanding. It can be observed that our synthetic data has the stronger
semantic information than MTT with more object textures, shapes and details, which demonstrates
the superior quality of our synthesized data.
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Figure 8: Synthetic data visualization on Tiny-ImageNet from MTT [1] and SRe2L.
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Figure 9: Synthetic data visualization on ImageNet-1K from SRe2L.
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Figure 10: Synthetic data visualization on ImageNet-1K from SRe2L.
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